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Control of transient chaos in tent maps near crisis. I. Fixed point targeting

C. M. Place and D. K. Arrowsmith
Mathematics Research Centre, Queen Mary and Westfield College, University of London, London E1 4NS, United Kingdo

~Received 23 August 1999!

Combinatorial techniques are applied to the symbolic dynamics representing transient chaotic behavior in
tent maps in order to solve the problem of Ott-Grebogi-Yorke control to the nontrivial fixed point occurring in
such maps. This approach allows ‘‘preimage overlap’’ to be treated exactly. Closed forms for both the prob-
ability of control being achieved and the average number of iterations to control are derived. The results are
discussed in relation to the work of Te´l and shed new light on the transition to the control of permanent chaos.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

A. Background

Interest in the control of chaotic systems has grown r
idly in the last decade, fueled, in part, by the diverse nat
of its applications. For instance, Ditto and Munakata@1# re-
viewed an impressive array of examples from physics~e.g.,
laser technology, telecommunications!, chemistry~e.g., sta-
bilization of chaotic chemical reactions!, and biology~e.g.,
heart arrhythmias, neural networks!.

A notable theoretical catalyst, which has initiated a lar
number of publications on chaos control, is the techniq
developed by Ott, Grebogi, and Yorke~OGY! @2# for con-
trolling states of a chaotic system onto an unstable fixed
periodic point using only small controls. The OGY strate
is to allow the uncontrolled chaotic orbit to evolve until
reaches a suitable neighborhood of the target~stage 1! and
then to apply small controlling perturbations of a syste
parameter to stabilize the controlled orbit in the vicinity
the target~stage 2!.

The OGY method highlights an important difference b
tween the control of chaos and more regular control syste
In the chaotic case the waiting time before a control is
plied depends sensitively on the initial point of the orbit, i.
this crucial parameter of the control process behaves lik
random variable. The distribution of this random variab
and its average value are clearly of central importance
practical applications. If the waiting time for control to b
applied is inordinately long, then the control procedure m
be of little practical value.

The literature associated with chaotic control and its
plications has been exhaustively reviewed in the recent b
by Chen and Dong@3#. It is clear from this source alone tha
for the most part, attention has been focused on control
permanently chaotic systems. However, there is a sparse
more recent literature on transiently chaotic systems. S
systems may well offer important opportunities for cont
where a permanently chaotic system cannot be realize
maintained. At the heart of this research effort is the work
Tél @4,5#.

The additional complication that transient chaos prese
is the possibility that orbits can escape from the vicinity
the repellor~and therefore the target! and never return. It
follows that, in contrast to permanently chaotic system
PRE 611063-651X/2000/61~2!/1357~12!/$15.00
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there is a nonzero probability that control will never b
achieved. Thus, for transiently chaotic control it is necess
to consider two characteristics of the control process:~i! the
probability that control takes place, and~ii ! the time to con-
trol when it occurs. The present paper studies these cha
teristics of transient chaos in a family of piecewise line
maps for which exact results can be derived.

Finally, it should be noted that the symbolic techniqu
used in this work have a physical interpretation within
thermodynamic formalism. For example, thekth order pre-
images described in Sec. I C are essentially what are refe
to as k cylinders in the thermodynamic approach. Wh
n51, these sets cover the interval@0,1# and provide a base
for its standard topology. Forn.1, the corresponding set
provide a natural neighborhood system of the repelling
variant set. These neighborhoods provide a symbolic
proach to the associated transient chaos. Also, many co
natorial generating functions can be formally interpreted
evaluations of sufficiently general partition functions. F
example, the formula~3.9! has such an interpretation withi
a grand canonical ensemble. While the connection with th
modynamics has not been exploited explicitly in the curr
work, the interested reader should consult the excellent
of Beck and Schlo¨gl @6# for more details of the thermody
namic approach to chaos.

B. The statistical experiment

Tél @4# addressed the problem of using the OGY strate
@2# to control the transient chaos associated with the crisis@7#
of the chaotic attractor that occurs in the one-dimensio
family of maps

xk115a2xk
2 , ~1.1!

whena52. The aim of the control was to stabilize the no
trivial fixed point (xF) of the map fora slightly greater than
2, where chaotic transients occur. In the process of estim
ing the average number of iterations before control w
achieved, Te´l considered a statistical experiment in which
large number of initial points were chosen at random~i.e.,
according to a uniform distribution! in the support interval
and obtained an expression for the frequency of initial poi
with orbits reaching the OGY target intervalI F ~containing
1357 ©2000 The American Physical Society
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1358 PRE 61C. M. PLACE AND D. K. ARROWSMITH
xF) in less than or equal ton iterations. The work reported
here deals with the analysis of this experiment for the c
where the right-hand side of Eq.~1.1! is replaced by the
generalized tent map

Tn~x!5H 2nx for 2`,x< 1
2

2n~12x! for 1
2 <x,`

~1.2!

~see @8#!. The more familiar tent~or ‘‘triangle’’ ! map @9#,
which exhibits permanent chaos, corresponds ton51: tran-
sient chaos occurs forn.1.

It is important to emphasize that the statistical experim
outlined above refers only to stage 1 of the OGY procedu
in which the dynamics are those of the uncontrolled syst
In this paper, as in@4#, stage 2 is only relevant in that it link
the length of the target interval to the maximum value t
the additive control is allowed to take~see Sec. V!. Compli-
cations associated with stage 2 that may be encountere
nonlinear maps in general~e.g., failure to achieve or main
tain control after entering the target interval! do not occur for
the piecewise linear tent maps. For example, linear feedb
control ensures the existence of a sequence of additive
trol parameters such that the controlled orbit remains wit
the target interval. Thus, control is assured when the sta
orbit first enters the target interval.

C. Target preimages

Since the initial points are chosen according to a unifo
distribution, the probability of selecting a starting pointx0
with orbit that is controlled in less than or equal ton itera-
tions is given by the length~Lebesgue measure! of the subset
of points in @0,1# that contribute to this event. Given tha
control takes place at the first entry of the orbit ofx0 into I F
the required subset of@0,1# consists of points with orbits tha
make their first entry intoI F in less than or equal ton time
steps. Once entry into the control region is achieved,
control is applied and Eq.~1.2! no longer describes the dy
namics. ConsiderTn

2k(I F)5$x0uTn
k(x0)PI F%. The mapTn

k

generates 2k coverings of@0,1# and the domain of each cov
ering contains a single, connected component ofTn

2k(I F),
which is conveniently referred to as an ‘‘order-k preimage of
I F . ’’ Figure 1 shows the 2k disjoint, kth order preimages o
a small target intervalI F , for k51 and 2, whenn51
1225 . It can be seen that, for eachk, half of the preimage
components are subsets of those of order (k21). This struc-
ture in the preimages ofI F arises from the action ofTn ,
which converts each covering of order (k21) into two cov-
erings of orderk, one of which intersects the original orde
(k21) covering. The result is that each order-(k21) preim-
age ofI F leads to two order-k preimages, one of which lie
inside the original order-(k21) preimage. A pointx0

PTn
2k(I F)ùTn

2(k21)(I F) has an orbit that entersI F after at
most (k21) iterations and remains there on thekth iteration.
Order-k preimages ofI F that contain such points are of n
interest at orderk in the control problem, because the
should have been counted at lower orders. The relev
points in the order-k preimages ofI F are those lying in the
setUk5Tn

2k(I F)\Tn
2(k21)(I F), for eachk>1: these are the

points with orbits that first enterI F in exactly k iterations.
e

t
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Providedk is not too large, the setUk is the disjoint union of
2k21 components, each of which is an order-k preimage of
I F . If we choose to denote these ‘‘first-entry’’ order-k pre-
images ofI F by wki , i 51, . . . ,2k21, then, fork51,2, . . . ,

Uk5ø i 51
2k21

wki ~1.3!

is the subset of points in@0,1# with orbits that first enterI F in
exactly k iterations of the map~1.2!. What is more, since
every orbit enteringI F must make its first entry intoI F at a
unique value ofk, the sets defined in Eq.~1.3! satisfy

UkùUk2 j5B ~1.4!

for j 51, . . . ,k, where U0 is I F itself. Hence, the set o
initial points with orbits that first enterI F in less than or
equal ton iterations is

U5øk50
n Uk , ~1.5!

where the union is disjoint because of Eq.~1.4!.

D. Preimage overlap

Unfortunately, for givenI F , Eq. ~1.3! is valid only pro-
vided k is sufficiently small for

UkùI F5B. ~1.6!

The domain of the covering of@0,1# generated byTn
k that

contains the fixed pointxF has nonempty intersection withI F
for all k and, for lowk, I F is typically a proper subset of thi
domain. Moreover, the 2k21 order-k, first-entry preimages of
I F are disjoint from I F itself ~cf. Fig. 1!. However, ask
increases, the slope of the covering@equal to (2n)k# in-
creases and the length of the domain decreases so that,

FIG. 1. Illustration of the order-k preimages of a typical targe
interval I F under the map~1.2! with n511225 andk51,2.
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tually, I F has nonempty intersection with the domains
adjacent coverings. Inevitably, therefore, there is a value
k5K for which the intersection in Eq.~1.6! first becomes
nonempty. A pointxPUKùI F has the property thatxPI F ,
Tn

K(x)PI F but Tn
j (x)¹I F , for j 51, . . . ,K21. The orbit of

x starts inI F , leaves the target interval forK21 iterations,
and returns to it at theKth iteration. All the points of the
nonempty ‘‘overlap’’ UKùI F must be excluded from the
union in Eq.~1.3!. Thus, when such an overlap occurs, E
~1.3! is no longer valid, because points in the intersection
the preimage withI F have been counted already atk50. For
k.K, the preimages of lower order overlaps must be
cluded along with any new overlaps that occur at orderk and
consequently the size of the overlap grows ask increases
aboveK. Moreover, ifn.K, overlap has a cumulative effec
on the estimate of the set of points that are controlled in
than or equal ton iterations given in Eq.~1.5!.

It is apparent from the above discussion that the criti
value K is increased if the length ofI F is reduced. Te´l @4#
avoided the problem of overlap by assuming target inter
lengths small enough to maintain the validity of Eq.~1.3! for
the values ofn considered. In the present work, symbo
dynamics is used to count the number of first-entry pre
ages of the target interval for anyk. This leads to a generali
zation of Eq.~1.3! and a form for Eq.~1.5! that is valid for
any n.

II. SYMBOLIC DYNAMICS FOR TENT MAPS

A. Permanent chaos

For n51, the functionTn , defined in Eq.~1.2!, maps@0,1#
onto itself, and its non-negative integer powers can be u
to associate a binary sequence with each point of@0,1# ~cf.
@8,9#!. The i th element of the sequence,s i , is given by

s i5H 0 if 0<Tn
i ~x!< 1

2

1 if 1
2 <Tn

i ~x!<1.
~2.1!

Equation~2.1! means that for each non-negative integeri, T1
i

~with T1
05 identity! partitions @0,1# into 2i 11 subintervals

of equal length, each labeled by a unique symbol blo
containing (i 11) binary digits. Figure 2~a! illustrates this
uniform dissection of@0,1# for i 50, 1, and 2. Note tha
the symbol sequence is built up by appending new bin
digits, obtained from Eq.~2.1! for increasing i, to the
right-hand end of each symbol block. Thus, the subinterv
labeled by the symbol blocks (.s0s1s2 . . . s j 210) and
(.s0s1s2 . . . s j 211) are both subsets of the subinterval
beled by (.s0s1s2 . . . s j 21) and their union covers it. In
the limit of i tending to infinity, the subinterval length ap
proaches zero and each resulting infinite binary seque
represents a distinct point in@0,1#. Moreover, if x is repre-
sented by (.s0s1s2 . . . ) then the above construction en
sures thatT1(x) corresponds to (.s1s2 . . . ), i.e., T1(x) is
represented by a left shift on the symbol sequence forx.

It should be noted that pointsy in @0,1# for which T1
k(y)

5 1
2 , for some non-negative integerk, are not assigned a

unique binary sequence by Eq.~2.1!. For such points, the
binary digitss0 . . . sk21 are determined by Eq.~2.1! but sk
can be either 0 or 1. What is more, it is onlysk that is
f
of

.
f

-

s

l

l

-

ed

k

y

ls

ce

ambiguous: sk11sk12 . . . 510 . . . , for all k, because
T1

k11(y)51 andT1
k1 j (y)50, for j 52,3, . . . .This indeter-

minacy @which is a reflection of the ambiguity of the repre
sentation of integer multiples of the inverse powers of 2
base 2, e.g., 1/2 can be represented as~.100 . . .! or
~.011 . . .! @9## is not a serious problem for the symbol
description of the dynamics, but, in relation to the pres
work, it can be viewed as a remnant of the transient cha
behavior observed whenn.1 ~see Sec. II B!. For example,
the symbolic representation of the pointy described above
shows that its orbit can move through@0,1# in an irregular
way for k21 iterations before reachingT1

k(y)5 1
2 followed

by T1
k11(y)51 and, ultimately, arriving at the fixed point a

x50.

B. Transient chaos

For n.1, Tn no longer maps@0,1# onto itself, points in the

~open! ‘‘escape interval’’ I E5„

1
2 @12(n21)/n#, 1

2 @11(n
21)/n#… leave@0,1# underTn . An alternative interpretation
~equally valid forn51! of the coding of the points in@0,1#
given by Eq.~2.1! can be obtained by recognizing that, fo
each positive integer j, the 2j symbol blocks
(.s0s1s2 . . . s j 21) uniquely label the~closed! preimages of
@0,1# underTn

j @see Fig. 2~b!#. This view of the coding em-
phasizes the correspondence between the symbol blocks
the 2j coverings of@0,1# generated byTn

j . It also makes
clear that the ambiguity of the symbolic representation of
preimages ofx51/2, for n51, arises because the length
the escape interval goes to zero in that case.

As Fig. 2~b! illustrates, the procedure~2.1! attributes a
unique symbol block (.s0s1 . . . sk22sk21) of k binary dig-
its ~a k block! to each of the order-k preimages of@0,1# that
make up the 2k components of the set of points with orbi
that remain in@0,1# for at leastk iterations. The remainder o
@0,1# is filled out by the preimages ofI E of order j
50,1,2, . . . ,k21. The union of these preimages is the set
points with orbits that enter the escape interval in less tha
equal tok21 iterations~i.e., that leave@0,1# in less than or
equal tok iterations!. It follows that, for each positive intege
k, @0,1# is partitioned intoI E and the preimages ofI E of order

FIG. 2. Illustration of ~a! the uniform dissection of@0,1# ob-
tained from non-negative powers ofT1, together with the symbol
blocks labeling its subintervals; and~b! the interpretation of the
symbol blocks of lengthk as labels for the order-k preimages of
@0,1# underTn , for k51,2,3. Note the analogous roles played
the pointx51/2 and its preimages whenn51, and the escape in
terval I E and its preimages whenn.1.
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1360 PRE 61C. M. PLACE AND D. K. ARROWSMITH
less than or equal to (k21), together with the 2k compo-
nents of the set of points with orbits that remain in@0,1# for
at leastk iterations~i.e., the order-k preimages of@0,1#!.

It is evident that, in the limit ofk tending to infinity, Eq.
~2.1! provides symbol sequences only for points with orb
that remain in@0,1# indefinitely. Forn.1, such points are the
elements of the Cantor set formed by the deletion of all
the preimages ofI E . For n51, I E has zero length, every
point of @0,1# remains in@0,1# indefinitely. Every point is
represented by an infinite binary sequence but the preim
of x51/2, where the closed preimages of@0,1# overlap, are
not represented uniquely.

It should be noted that, forn.1, all the features of ‘‘cha-
otic behavior’’ predicted by the conjugacy ofTn and the left
shift on infinite binary sequences~including a dense set o
periodic orbits, aperiodic orbits, etc.! occur on the invariant
Cantor set described above. It is this repelling invariant
~which has Lebesgue measure zero! that is responsible for
the transient chaotic behavior studied here. Each transie
chaotic orbit ultimately escapes from@0,1#, i.e., there exists a
non-negative integerk such that the initial pointx0 of the
orbit lies in an order-k preimage ofI E but does not lie in any
order-j preimage of that interval withj ,k. It follows that
the orbit ofx0 remains in@0,1# for k iterations, enteringI E on
the kth step, and Eq.~2.1! provides a binary symbol block
(.s0s1 . . . sk22sk21) based on the evolution of this part o
the orbit. This block determines the order-k preimage of@0,1#
containingx0 and, under left shift, the order-(k2 j ) preimage
of @0,1# containingTn

j (x0) for j 51, . . . ,k21. It is impor-
tant to distinguish the finite symbol blocks that are used
this symbolic treatment of transient chaotic behavior fro
the infinite symbol sequences that describe the perma
chaos that takes place on the invariant Cantor set.

III. A SYMBOLIC APPROACH TO OTT-GREBOGI-YORKE
CONTROL

A. Target intervals

It is easily verified that the symbol sequence correspo
ing to the nontrivial fixed point ofTn is ~.111 . . .!. The
relationship between symbol blocks of increasing length~see
Sec. II! means that this point lies inside every member of
sequence of subintervals of@0,1# represented by
$~.1!,~.11!,~.111!, . . . %. In order to make use of symbolic dy
namics in the control of transient chaos it is necessary to
the target intervalI F to be one of these subintervals. Th
means that some flexibility in the choice ofI F must be sac-
rificed and the luxury of having the fixed point central
placed inI F has to be given up. However, the target interv
defined by symbolic dynamics have significant advanta
over other choices in that~a! partial overlap of the preimage
of I F with I F itself does not occur, and~b! established com-
binatorial methods~associated with finite binary strings! can
be used to count the number of first-entry preimages pre
at any order.

B. Characterization of first-entry preimages

Suppose thatI F is taken to be the interval labeled by ther
block (.11 . . . 1)r , where the subscript indicates the numb
of digits in the block. Recall from Sec. I that the aim is
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obtain the number of preimages ofI F containing points with
orbits that first enterI F in less than or equal ton iterations.
The preimages ofI F of order k are represented by symbo
blocks derived from(.11 . . . 1)r , by appendingk binary
digits to its left-hand end. The resulting (k1r ) block,
(.s1s2 . . . sk11 . . . 1)k1r , clearly yields (.11 . . . 1)r after
k successive applications of a left shift. All 2k such preimage
blocks represent subintervals of@0,1# containing points with
orbits that enterI F afterk iterations, but only those for which
this is the first entry intoI F are to be counted. Such preimag
symbol blocks are distinguished by the property that the
nary strings1s2 . . . sk11 . . . 1 of lengthk1r contains the
substring consisting ofr adjacent 1’s, at its right-hand en
but nowhere else within it.s j 115s j 125 . . . 5sk51 then
the orbit of points in this preimage would enterI F after j
,k iterations, so that the entry occurring afterk iterations
would not be the first.

C. Combinatorics for characteristic strings

The problem of counting binary strings with a given su
string occurring only at one end has been dealt with by O
lyzko @10#. The calculation, for the case of interest here, m
be outlined as follows. LetA denote the binary string ofr
adjacent 1’s and define~a! f A(m) to be the number of binary
strings of lengthm that do not containA ~as a substring ofr
adjacent binary digits! anywhere within them; and~b! gA(m)
to be the number of binary strings of lengthm with the
property thatA occurs at the right-hand end but nowhere e
within them. Note thatgA(m)50, for m50,1, . . . ,r 21, be-
cause there can be no binary strings of length less thanr that
haveA at their right-hand end.

If B5(b1b2 . . . bm) does not containA as a connected
substring thenBb5(b1b2 . . . bmb), with b50,1, must ei-
ther fail to containA anywhere or containA only at its right-
hand end. Thus

2 f A~m!5 f A~m11!1gA~m11!. ~3.1!

Furthermore, each concatenationBA containsA in one, and
only one, of the forms

~3.2!

with j 5m,m21,m22, . . . ,m2r 11. The leftmost sub-
string of lengthj 1r in Eq. ~3.2! hasA at its right-hand end
but nowhere else within it: the number of such strings
gA( j 1r ). Since the total number of concatenationsBA is
f A(m), it follows that

f A~m!5 (
j 5m2r 11

m

gA~ j 1r !5(
i 51

r

gA~m1 i !. ~3.3!

Equations~3.1! and~3.3! can be used to obtain both a recu
rence relation and a generating function for the numb
gA(m). The recurrence relation,
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gA~m1r 11!5(
j 50

r 21

gA~m1r 2 j !, ~3.4!

follows when Eq. ~3.3! is used to eliminatef A(m) and
f A(m11) from Eq. ~3.1!. The generating function can b
obtained as follows. Multiplication of Eqs.~3.1! and~3.3! by
zm and summation fromm equals zero to infinity yields
respectively,

2FA~z!5z21
„FA~z!21…1z21GA~z!, ~3.5!

and

FA~z!5z2rCA~z!GA~z!, ~3.6!

where

CA~z!5(
i 50

r 21

zi . ~3.7!

In Eqs. ~3.5!–~3.7!, FA(z) and GA(z) are the generating
functions for f A(m) and gA(m), respectively, andCA(z) is
the correlation polynomial for the binary stringA ~see Od-
lyzko @10#!. Equation~3.5! can be written in the form

~122z!FA~z!1GA~z!51 ~3.8!

and substitution of Eq.~3.6! gives

GA~z!5 (
m50

`

gA~m!zm5
zr

@zr1~122z!CA~z!#

5
zr

S 12(
i 51

r

zi D . ~3.9!

D. Numbers of first-entry preimages ofI F

Since (.11 . . . 1)r represents the target intervalI F , the
numbergA(m) of binary strings of lengthm that have the
substringA at their right-hand end, but nowhere else, is eq
to the numberNk

(r ) of preimages ofI F of order k5m2r
containing points with orbits that first enterI F after k itera-
tions of the tent map. ThusNk

(r )5gA(k1r ) and the recur-
rence relation~3.4! becomes

Nk11
(r ) 5(

j 50

r 21

Nk2 j
(r ) . ~3.10!

Recognizing thatgA(m)50 for m51, . . . ,r 21 is equiva-
lent to N2 j

(r )50, j 51, . . . ,r 21 and noting thatgA(r )
5N0

(r )51, Eq.~3.10! provides an efficient algorithm for gen
erating the numbersNk

(r ) . For r 52, Eq. ~3.10! leads to the
Fibonacci numbers.

Observe that Eq.~3.10! givesNk
(r )52k21, for k51, . . . ,

r , andNk11
(r ) 52r21, showing that the preimage ‘‘overlap

referred to by Te´l @4# first occurs fork5r 11. This result is
immediately apparent from the symbolic approach. The fi
order preimages ofI F are represented by (.011 . . . 1)r 11 and
(.111 . . . 1)r 11 . The latter preimage clearly lies withinI F ,
as do all its preimages, resulting in only half of the prei
l

t-

-

ages ofI F satisfying the first entry condition in any orde
What is more, the preimages ofI F up to orderr arising from
(.011 . . . 1)r 11 can only contain a binery string ofr adjacent
1’s at their right-hand end, and therefore all 2k21 of these
preimages contribute fork51, . . . ,r . One preimage of orde
r 11, namely, that represented by (.11 . . .1011 . . . 1)2r 11,
fails to satisfy the first-entry condition, so thatNr 11

(r ) 52r

21.
The generating functionĜr(z) for the numbers$Nk

(r )%0
`

can be obtained from Eq.~3.9! by, once again, rememberin
that gA(m)50, for m50,1, . . . ,r 21. Thus

GA~z!5 (
m5r

`

gA~m!zm5zr (
k50

`

Nk
(r )zk5zrĜr~z!,

~3.11!

where

Ĝr~z!5 (
k50

`

Nk
(r )zk5S 12(

i 51

r

zi D 21

. ~3.12!

IV. CALCULATION OF PROBABILITIES

In the context of the statistical experiment described
Sec. I, the probability with which points, chosen according
a uniform distribution in@0,1#, will be controlled in less than
or equal ton iterations is given by the sum of the lengths
the first-entry preimages ofI F of order less than or equal t
n. The length of the target intervalI F represented by
(.11 . . . 1)r is (2n)2r and the lengths of the preimage inte
vals of orderk are all equal and given by (2n)2r(2n)2k .
Hence the probability of choosing an initial point with a
orbit that first enters I F in exactly k iterations is
Nk

(r )(2n)2(k1r ) and the probability of selecting an initia
point that is controlled in less than or equal ton iterations of
the mapTn is

pn~n,r !5~2n!2r (
k50

n

Nk
(r )~2n!2k. ~4.1!

In the limit of n tending to infinity, the summation in Eq
~4.1! becomes the generating functionĜr(z) evaluated at
(2n)21 and the probability that control is ultimatel
achieved is given by

p~n,r !5 lim
n→`

$pn~n,r !%5~2n!2r Ĝr„~2n!21
…5GA„~2n!21

….

~4.2!

Substitution ofĜr(z) from Eq. ~3.12! yields

p~n,r !5
~2n21!

~2n!r~2n22!11
. ~4.3!

Since Eq.~4.1! is a sum of positive terms, this limiting valu
represents an upper limit to the probability of successful c
trol for given n and r.
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A. Permanent chaos„nÄ1…

In this case, the whole of the interval@0,1# is a chaotic
invariant set forT1 . The set of points in@0,1# corresponding
to symbol sequences that contain every finite symbol bl
at least once has measure 1@8,11#. This means that, with
probability 1, the orbits of all choices of initial point in@0,1#
will eventually pass through the target intervalI F . Hence the
measure of initial points whose orbits first enterI F in less
than or equal ton iterations must tend to unity asn tends to
infinity. This limiting behavior is confirmed by the expre
sion for p(n,r ) in Eq. ~4.3! which reduces to unity forn51.

B. Transient chaos„nÌ1…

In contrast to Sec. IV A, whenn.1, the measure of the
initial points with orbits that ultimately remain in@0,1# is
zero. Every pointx0 in the complement of the invariant Can
tor set must therefore belong to a preimage ofI E of some
orderk, with k>0. However, every preimage of orderk of
I E is a subinterval of the corresponding preimage of@0,1# of
order k ~see Sec. II!. For k>1, the latter is labeled by a
binary symbol block (.s0s1 . . . sk21) and the evolution of
the points within it is given by applying successive left shi
to this block. Afterk21 iterations,Tn

k21(x0) lies in the sub-
interval represented by (.sk21) and enters the escape inte
val at the next iteration. If the orbit ofx0 entersI F then r
adjacent 1’s must occur as a connected substring wi
s0s1 . . . sk21 . Conversely, ifs0s1 . . . sk21 does not con-
tain this substring, then the orbit ofx0 entersI E afterk itera-
tions without enteringI F . The orbit of such a point will
never be controlled for it will subsequently leave@0,1# and
not return. The number of binary strings of lengthk that do
not contain a substring ofr adjacent 1’s anywhere within
them is f A(k) and each of the corresponding symbol bloc
represents a subinterval of@0,1# containing a preimage ofI E
of length (1
2n21)(2n)2k . Thus the probability of selecting an initia
point with an orbit that entersI E in less than or equal ton
iterations, without passing throughI F , is

p̄n~n,r !5~12n21!(
k50

n

f A~k!~2n!2k. ~4.4!

In the limit of n tending to infinity, Eq.~4.4! becomes

p̄~n,r !5 lim
n→`

$ p̄n~n,r !%5@~122z!FA~z!#z5(2n)21.

~4.5!

The sequence$ p̄n(n,r )%n50
` is increasing, so thatp̄(n,r ) is

an upper bound forp̄n(n,r ). The form of the generating
function FA(z) given in Eqs.~3.6! and ~3.7! can be used
@along with Eqs.~3.11! and ~3.12!# to show that

FA~z!5 (
k50

` S (
i 50

r 21

Nk2 i
(r ) D zk. ~4.6!

It then follows from the recurrence relation~3.10! that

f A~k!5Nk11
(r ) . ~4.7!
k

in
Thus Eq.~3.10! provides a convenient way of obtaining th
data necessary to evaluate the finite summations in both
~4.1! and ~4.4!.

C. Numerical results

Calculations ofpn(n,r ) andp̄n(n,r ) reveal that their sum
is less than unity. This is to be expected, since there
points in@0,1# with orbits that do not satisfy the requiremen
assumed in deriving either Eq.~4.1! or Eq. ~4.4!. In other
words, there are initial points with orbits that fail to reac
either I E or I F in less than or equal ton iterations. Thus, for
any finite n, there is a nonzero probabilityun(n,r ) that the
fate of the initial point is undecided aftern iterations. How-
ever, every point of@0,1# must belong to one, and only one
of three mutually exclusive possibilities:~a! its orbit enters
I F ; ~b! its orbit reachesI E , without enteringI F ; or ~c! its
orbit fails to reach eitherI F or I E ; in less than or equal ton
iterations. Therefore,

pn~n,r !1 p̄n~n,r !1un~n,r !51. ~4.8!

As n tends to infinity,un(n,r ) must go to zero~cf. Fig. 3!.
This follows because almost all~in the sense of Lebesgu
measure! initial points in @0,1# have orbits that ultimately
leave that interval and each such orbit either passes thro
I F or it does not. Therefore, the sum of the limiting form
given in Eqs.~4.2! and ~4.5! must be unity. Substitution o
Eqs.~4.2! and ~4.5! into Eq. ~3.8! shows that

p~n,r !1 p̄~n,r !51, ~4.9!

for any choice of the positive integerr or n>1. Notice also
that Eqs.~4.8! and ~4.9! imply

un~n,r !5@p~n,r !2pn~n,r !#1@ p̄~n,r !2 p̄n~n,r !#.
~4.10!

FIG. 3. Plots ofun(n,r ) for n51,1.001,1.01,1.05 whenr 55
~solid line!; andr 510 ~dashed line!. The strongerr dependence of
un(1,r ) compared withun(1.05,r ) arises because the former is d
termined by the convergence ofpn(1,r ) to 1, while the latter is

dominated by the convergence ofp̄n(1.05,r ) to p̄(1.05,r ). A dis-
cussion ofun(n,r ) and its relation to the design of numerical e
periments can be found in@12#.



se
e

es

.

ol
xi
e

b

ag
ri
ile
e

l i
o

es
tri
-

-
on
lit

ro
b

of
to
g a
red.

led

ith

t the
l

ade
ake

e
is a

he
n-
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The first term in Eq.~4.10! represents the maximum increa
in the probability of successful control that can be achiev
by increasingn. For givenn and r, no matter how largen
becomes, there remains a probabilityp̄(n,r )512p(n,r )
that control will not be achieved.

Numerical values ofp(n,r ) for some trial values ofn and
r are given in Fig. 4. Observe that, for all of the trial valu
of n.1, p(n,r ) falls to a value close to zero forr'20, but
the closern is to 1 the longerp(n,r ) remains near to unity
Recall that the length ofI F is (2n)2r<22r , so that, for the
values ofn.1 in Fig. 4, the probability of successful contr
has all but vanished for target intervals of length appro
mately equal to 1026 . Hence, control problems that impos
the use of small target interval lengths, whilen is bounded
away from 1, must be treated with caution if a realistic pro
ability of successful control is to be maintained.

V. AVERAGE NUMBER OF ITERATIONS TO CONTROL

A. The assumption of controllability

It can be argued that a practical estimate of the aver
number of iterations to be involved in a numerical expe
ment should take account of the iterations that occur in fa
runs, i.e., initial points with orbits that fail to reach the targ
interval in the maximum numbern* of iterations allowed. In
this context, any orbit that fails to reach the target interva
n* iterations must be counted as a failure. The probability
choosing such an initial point is 12pn

*
(n,r )5 p̄n

*
(n,r )

1un
*
(n,r ). As Fig. 4 shows,p(n,r ) @and hencepn

*
(n,r )#

can be significantly different from unity and, in such cas
failure to achieve control would make an additional con
bution of n* @12pn

*
(n,r )# to the expected number of itera

tions involved in the experiment. Forn.1, this contribution
diverges asn* →`. In order to avoid this difficulty, the cal
culation of the average number of iterations required for c
trol to take place makes use of the conditional probabi
distribution that assumes control actually occurs.

It follows that the average number of iterations to cont
is a property of the set of controllable points, while the pro

FIG. 4. Numerical illustration of the dependence ofp(n,r ) on n
and r. Plots ofp as a function ofr are shown for trial values ofn.
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ability that control takes place is a property of the set
initial points as a whole. Information about the failure
achieve control is embodied in the latter. When designin
numerical experiment both properties must be conside
Clearly, it is advisable to arrange forpn

*
(n,r ) to be close to

1, in order to avoid wasting computer resources on fai
runs. For example, a possible strategy might be to choose~a!
r so that the length of the target interval is compatible w
the maximum control parameter;~b! n so thatp(n,r ) is suf-
ficiently close to unity; and~c! n* so thatun

*
(n,r ) is close

to zero. However, although such precautions ensure tha
experiment ‘‘hit rate’’ is sufficiently close to 1, they revea
nothing of the number of time steps that have to be m
before the target interval is reached when control does t
place.

B. Calculation of the conditional average

For those initial points with orbits that are controlled, th
number of iterations required to reach the target interval
random variable. If the target intervalI F is represented by
the code block (.11 . . . 1)r , the probability of selecting an
initial point that first reachesI F in exactly k iterations is
Nk

(r )(2n)2(k1r ) . It then follows~cf. Tél @4#! that the average
number of time steps to control,t(n,r ), is given by

t~n,r !5

~2n!2r (
k51

`

kNk
(r )~2n!2k

~2n!2r (
k50

`

Nk
(r )~2n!2k

. ~5.1!

Observe that Eq.~5.1! involves only initial points with orbits
that reachI F . It is therefore an average with respect to t
conditional probability distribution, which assumes that co
trol occurs.

The generating functionĜr(z) obtained in Sec. III can be
used to evaluate the sums appearing in Eq.~5.1!. It can be
shown that

t~n,r !5F zĜr8~z!

Ĝr~z!
G

z5(2n)21

, ~5.2!

where8 denotes differentiation with respect toz, and substi-
tution of Eq.~3.12! yields the result

t~n,r !5Fz$12~r 11!zr1rzr 11%

~12z!$122z1zr 11% G
z5(2n)21

. ~5.3!

C. Limiting behavior of t„n,r … for small target intervals

To examine the behavior oft(n,r ) near the crisis atn51,
it is convenient to write (2n)215221(12d), so that Eq.
~5.3! becomes

t~n,r !5S 12d

11d D
3F12~r 11!22r~12d!r1r22(r 11)~12d!r 11

d122(r 11)~12d!r 11 G .
~5.4!
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For given 0,d,1, the terms containing factors of 22r are
negligible compared withd for sufficiently larger, and

t~n,r !'S 12d

11d D1

d
5t`~n!. ~5.5!

Thust(n,r ) becomes essentially independent ofr whenr is
large enough~see Fig. 5!, i.e., it is essentially independent o
the length of the target interval when the latter is sufficien
small ~cf. Tél @4#!. For d tending to zero, i.e., very close t
crisis, Eq.~5.5! gives

t`~n!'
1

d
. ~5.6!

By definition d5(12n21), so that 2 ln n5ln(12d)'2d
and

t`~n!'
1

ln n
. ~5.7!

The escape ratek is defined~cf. Tél @13#! in terms of the
asymptotic formWn;exp(2kn) of the probabilityWn that a
randomly chosen point has not escaped from@0,1# after n
iterations. Direct summation of the lengths of the preima
of the escape interval shows thatWn5n2n5exp(2n ln n) for
the orbits ofTn , so thatk5ln n. Thus Eq.~5.7! can be writ-
ten as

t`~n!'
1

k
, ~5.8!

in agreement with Te´l @4#. It is important to note that the
forms given in Eqs.~5.5!–~5.8! are not valid whend50 ~or,
equivalently, if n51 or k5ln n50!; rather, Eq.~5.4! then
gives

FIG. 5. Plots oft(n,r ) calculated using Eq.~5.3! for n51.01,
1.001, and 1.0001. The limiting values obtained agree with th
given by Eq.~5.5!. Note that the base-10 logarithm oft(n,r ) is
plotted, rather thant(n,r ) itself, in order to present the data on
single graph.
s

t~1,r !5
12~r 11!22r1r22(r 11)

22(r 11) '
2

l ~ I F!
, ~5.9!

for sufficiently large values ofr. Here l (I F)5(2n)2r is the
length of the target interval, so that Eq.~5.9! shows that
t(1,r ) diverges asr tends to infinity because the length o
the target interval tends to zero. In the OGY method
length of the target interval is usually determined by t
maximum allowed value of the control parameterp* . A
straightforward calculation for the control in stage 2 yiel
p* 5n l (I F) for the mapTn , so that Eq.~5.9! gives

t~1,r !'
2

p*
, ~5.10!

when r is large enough~cf. Tél @4#!. Clearly, a similar ex-
pression to Eq.~5.9! holds whend.0 but is small compared
to (2n)2r . In such situations, a transition between the lim
iting forms given in Eqs.~5.8! and~5.10! takes place asr is
increased withd held fixed. This transition is illustrated in
Fig. 6. Following Tél ~cf. Fig. 4 of @4#!, plots of ln@t(n,r)# as
a function of ln(p* )5ln@n(2n)2r# are shown, so that the lim
iting slope of21 predicted by Eq.~5.10! is visible for n51.

VI. ROLE OF PREIMAGE ORDERS WITHOUT OVERLAP

It was shown in Sec. III that overlap~as defined in Sec. I!
affects the number of preimages of the target interval only
orders greater thanr. Since N0

(r )51, Nk
(r )52k21 for k

51, . . . ,r , Eq. ~4.1! can be written in the alternative form

pn~n,r !5~2n!2rS 11
1

2n (
j 50

r 21

n2 j1 (
k5r 11

n

Nk
(r )~2n!2kD ,

~6.1!

whenn.r . For n less than or equal tor, only the first sum-
mation in Eq.~6.1! appears. These terms, where the num

e
FIG. 6. Plots of ln@t(n,r)# as a function of ln(p* ) obtained from

Eq. ~5.3! for n51.01, 1.001, 1.0001, and 1.0. Note that the graph
n51 has slope21 for small enoughp* as predicted by Eq.~5.10!.



se

p

oc

r-
ed

ch

e
e
f
f

ent

f
ch
uch

p-
-

rol
oid

the
n-

by

the

ion
r-

is-

PRE 61 1365CONTROL OF TRANSIENT CHAOS IN . . . . I. . . .
of first-entry preimages is unaffected by overlap, were u
by Tél @4# as the basis of his treatment oft. The aim of this
section is to discuss the significance of these ‘‘nonoverla
terms for the tent maps~1.2!.

A. Approximation of the distribution p„n,r …

When the target interval is represented by the code bl
(.11 . . . 1)r , there are no effects of preimage overlap forn
<r . The approach taken by Te´l @4# is to assume thatn is
sufficiently small for no overlap to occur for the target inte
val chosen. In the following discussion it will be assum
that, for the given symbolic target interval,n is the largest
value for which this is true, namely,n5r , and define

p̃~n,r !5~2n!2rS 11
1

2n (
j 50

r 21

n2 j D . ~6.2!

It is always the case thatp̃(n,r ),p(n,r ), but for what val-
ues ofr ~i.e., for what target interval lengths! does the former
provide a reasonable approximation to the latter? The sum
the geometric progression in Eq.~6.2! can be written as

p̃~n,r !5H ~2n!2r
2~n21!112n2r

2~n21!
, n.1

22r
21r

2
, n51,

~6.3!

while a minor rearrangement of Eq.~4.3! gives

p~n,r !5H ~2n!2r
2~n21!11

2~n21!1~2n!2r , n.1

1, n51.

~6.4!

In order to compare Eqs.~6.3! and~6.4! whenn.1, consider

p̃~n,r !

p~n,r !
5F2~n21!112n2r

2~n21!11 GF2~n21!1~2n!2r

2~n21! G .
~6.5!

It is convenient to writen215e, wheree is typically posi-
tive, less than 1 and tends to zero as the crisis is approa
from above. It then follows that

p̃~n,r !

p~n,r !
512

~11e!2r

~112e!
1

22r~11e!2r

2e H 12
~11e!2r

~112e! J
512h~r ,e!, ~6.6!

whereh is the relative error inp̃(n,r ). The presence of a
factor ofe21 in the second term ofh shows that care must b
taken if the crisis is to be approached closely. It is possibl
suppress this term by increasingr, because of the factor o
22r that occurs in its numerator. However, the first term oh
remains a problem unless eithere is significantly different
from zero or r is large enough to reduce (11e)2r to an
acceptable value. An estimate of the value ofr required to
achieve a given relative error whene is very close to zero
can be obtained as follows. It can be shown that ifr is such
d

’’

k

of

ed

to

that (11e)2r!1 then 22(r 11)!e and the first term ofh is
dominant. Thus, sincee is close to zero,h'(11e)2r im-
plies

r'
2 ln~h!

ln~11e!
'

2 ln~h!

e
. ~6.7!

The values ofr given by Eq.~6.7! indicate thatp̃(n,r ) can-
not provide a realistic approximation top(n,r ) in any prac-
tical situation. For example, given the modest requirem
that h5e23'0.05, Eq.~6.7! gives r 5300 for e50.01 and
r 53000 fore50.001. In the former case, this means that

p̃~n,r !;p~n,r !;~2n!2r H 11
1

2eJ '10290, ~6.8!

while in the latter case the asymptotic form given in Eq.~6.8!
is of order 102900. In terms of the statistical experiment o
Sec. I, there is essentially no probability of control in su
cases because the target interval length is so small for s
values ofr.

In conclusion, therefore, whilep̃(n,r ) and p(n,r ) both
have the same asymptotic form@namely, that given in Eq.
~6.8!# asr tends to infinity, the value ofr required to satisfy
comparatively modest constraints on the relative errorh in-
creases rapidly asn decreases toward unity. Indeed, the a
proximation afforded by the contribution arising from preim
ages without overlap in Eq.~6.1! is of no practical value for
e5n21<0.01, because the probability of successful cont
is essentially zero for target intervals small enough to av
preimage overlap.

When e is somewhat greater, acceptable values of
relative errorh can be obtained for more realistic target i
terval lengths@e.g., for e50.2, h50.05, Eq.~6.7! gives r
'15 and Eq.~6.8! yieldsp(n,r )'1025#. This is a reflection
of the reduced significance of overlap whenn is substantially
greater than 1. The length of each order-k preimage ofI F is
(2n)2(k1r ) and this is smaller the greater the value ofn. The
corrections arising from overlap, which first appear fork
5r 11, are therefore of smaller magnitude whenn is sub-
stantially greater than one. Whenn51, the total length of the
pre-images of orderk ~in the absence of overlap! is 22(r 11),
independent ofk, and, whenn tends to infinity with a target
interval of finite length, overlap is the mechanism where
divergence of the sum appearing in Eq.~4.1! is avoided.
Thus overlap plays an essential role in the treatment of
control problem whenn51.

B. Overlap corrections to the probability density function

The increase in the significance of overlap asn ap-
proaches 1 is apparent in the probability density funct
P(n,r ;k) for p(n,r ), where the terms with and without ove
lap occur in different ranges ofk.

The probability density function corresponding to the d
tribution p(n,r ) is given by

P~n,r ;k!5Nk
(r )~2n!2(k1r ), ~6.9!

whereNk
(r ) is the number of first-entry, order-k preimages of

the target interval. RecallN0
(r )51 andNk

(r ) is equal to 2k21
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for k51, . . . ,r , but for k>r 11, Nk
(r ) falls below 2k21, be-

cause of the overlap of some of these higher order first-e
pre-images with the target interval itself. In the absence
such corrections, Eq.~6.9! would take the form

P̃~n,r ;k!5H ~2n!2r , k50

@~2n!2rn2k#/2, k>1.
~6.10!

Note that Eq.~6.10! includes the extrapolation ofP̃ to values
of k greater thanr. While P̃ no longer provides an approx
mation toP for such values ofk, the extrapolation is usefu
because the deviation ofP from it represents the effect o
preimage overlap. Thus,

P~n,r ;k!H 5 P̃~n,r ;k!, k50,1, . . . ,r

, P̃~n,r ;k!, k5r 11 . . . .
~6.11!

For n.1, Eq. ~6.10! shows thatP̃(n,r ;k) decreases ask
increases. The rate of decrease is determined bye5n21; the
greater the value ofe, the more rapid the decline ofP̃(n,r ;k)
with k. Equation ~6.11! shows thatP(n,r ;k) follows the
same downward trend ask increases from 1 tor, but there-
after the decline is accelerated by the reduction in the n
ber of preimages contributing because of overlap. Figur
shows P(11e,10;k) and P̃(11e,10;k), with e50, 5
31024, and 1023, for k51, . . .,20. The acceleration of th
downward trend in the data forP(n,r ;k), arising from over-
lap, is clearly visible. However, this phenomenon is not
ways so obvious. The recurrence relation~3.10! can be used
to show that the overlap correction

2r 1 j 212Nr 1 j
(r ) 52 j 211~ j 21!2 j 22, ~6.12!

for j 51, . . . ,r 11. Observe that this correction does not d
pend explicitly onr. Thus, the greater the value ofe, the
smaller are the firstr 11 corrections due to overlap@since
each is the difference given in Eq.~6.12! multiplied by the

FIG. 7. Results of numerical calculations ofP(11e,r ;k) for r
510 when~a! e50; ~b! e5531024; ~c! e51023 . In each case the
data that are unaffected by overlap are extrapolated as a dashe
in order to highlight the accelerated downward trend inP(n,r ;k)
for k.r .
ry
f

-
7

-

-

preimage length of (2n)2(k1r ) with k5r 1 j ]. These overlap
corrections are also diminished at increasedr. Not only do
they first appear at larger values ofk, but their value is also
reduced by ther dependence of the preimage length wh
the preimage number deficits are still given by Eq.~6.12!. As
a consequence, the acceleration of the downward tren
P(n,r ;k) may not be as marked as that shown in Fig. 7 wh
e is significantly greater than zero and/or larger values or
are used.

C. Asymptotic form for P„n,r ;k… at large k

1. Transient chaos

Whenn.1, the decline ofP(n,r ;k) with increasingk is
asymptotically exponential at larger with an exponent re-
lated to the escape ratek. Figure 8 illustrates the exponentia
‘‘tail’’ of P(11e,r ;k) when e50.01, r 510. The
asymptotic form can be derived formally as follows. Equ
tion ~6.9! gives

ln@P~n,r ;k!#5 ln~Nk
(r )!2k ln 22k ln n2r ln~2n!

~6.13!

and, therefore, the forward difference

D ln@P~n,r ;k!#5 ln@P~n,r ;k11!#)2 ln@P~n,r ;k!#

52 ln n1 lnF Nk11
(r )

2Nk
(r )G . ~6.14!

For k51, . . . ,r 21, the second term in~6.14! is zero be-
causeNk11

(r ) 52k and Nk
(r )52k21 . However, fork>r , this

term is affected by preimage overlap. An extension of
analysis of the recurrence relation~3.10! used to obtain Eq.
~6.12! shows that

Nr 1 j 11
(r )

2Nr 1 j
(r ) 51222(r 11)1O~222(r 11)!, ~6.15!

for j 50,1, . . . , sothat

line

FIG. 8. Numerical calculations ofP(n,r ;k) with n51.01 and
r 510, illustrating thek dependence ofP for k in the range 1 to 250.
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D ln@P~n,r ;r 1 j !#52 ln n1 ln@1222(r 11)

1O~222(r 11)!#. ~6.16!

Whenr is large enough for the second term in the right-ha
side of Eq.~6.16! to be neglected, it follows that

P~n,r ;r 1 j 11!'P~n,r ;r 1 j !exp~2k!, ~6.17!

where k5ln n. Moreover, since Eq.~6.17! is true for any
non-negative integerj, it follows that

P~n,r ;r 1n!'P~n,r ;r !exp~2kn!. ~6.18!

2. Permanent chaos

Equation ~6.17! is based on the assumption thatn is
bounded away from 1, i.e.,n511e with e.0, so that the
large-r limit in Eq. ~6.16! provides a nontrivial result. This
assumption is made by Te´l @4#, and Eq.~6.18! gives the
resulting asymptotic form that is dependent on the esc
rate. However, it is clear that the crisis itself cannot
reached using the analysis of Sec. VI C 1. An alternat
~and more practical! procedure is to recognize that there is
lower limit to the length of target interval that can be co
sidered~corresponding to a maximum acceptable value or
5r * ), for otherwise the probability of success becomes
acceptably small, and to allown to approach 1 in Eq.~6.16!
@or, more precisely, in Eq.~6.14!# with r 5r * . Under these
circumstances, the first term in Eq.~6.16! becomes negligible
compared with the second, so that

P~n,r * ;r * 1 j 11!'P~n,r * ;r * 1 j !
Nr

*
1 j 11

(r
*

)

2Nr
*

1 j
(r

*
)

'P~n,r * ;r * 1 j !@1222(r
*

11)

1O~222(r
*

11)!#, ~6.19!

and Eq.~6.18! is replaced by

P~n,r * ;r * 1n!'P~n,r * ;r * !)
j 51

n Nr
*

1 j 11
(r

*
)

2Nr
*

1 j
(r

*
) ~a!

'P~n,r * ;r * !@1222(r
*

11)

1O~222(r
*

11)!#n ~b!, ~6.20!

whenn51 so that lnn50, ' is replaced by5 in both Eqs.
~6.20a,b!. It is then clear @from Eq. ~6.20a!# that the
asymptotic behavior ofP(n,r * ;r * 1n) is determined by the
numbers of preimages of the target interval that contribut
the event that the orbit first enters that interval in exactlr
1 j iterations, with j 51, . . . ,n11. Moreover, Eq.~6.15!
shows that the ratioNr 1 j 11

(r ) /2Nr 1 j
(r ) is independent ofj to first

order in 22(r 11), and thereforeP(n,r * ;r * 1n) depends
only on n to this order@see Eq.~6.20b!#.
d

e

e

-

to

3. Transitional behavior

The role played by the relative sizes ofe5n215k
1O(e2), and 22r5n r l (I F)5n r 21p* , in passing between
Eqs. ~6.18! and ~6.20!, can be obtained approximately b
rewriting Eq.~6.16! as

D ln[ P~n,r ;r 1 j !] 52 ln~11e!1 ln@1222(r 11)

1O~222(r 11)!#

'2e222(r 11)1O~e2!1O~222(r 11)!,

'2k2
1

2
p* 1O~p* e!1O~e2!

1O~222(r 11)!, ~6.21!

for small e and larger. Provided all but first-order terms in
Eq. ~6.21! can be neglected, it follows that

P~n,r ;r 1n!'P~n,r ;r !exp~2kn!exp~2 1
2 p* n!.

~6.22!

In this approximation, the ‘‘escape’’ (n.1,r→`) and
‘‘overlap’’ ( n→1,r<r * ) mechanisms make independe
contributions to the overall exponential tail ofP(n,r ;k).
This approximate independence of the escape and ove
mechanisms implies the existence of the transitional beh
ior in t(n,r ) that is shown in Fig. 6~cf. Tél @4#!.

VII. CONNECTION WITH THE CALCULATIONS
OF Tél

Tél’s calculations@4# are based on the assumption that t
length of the target interval is so small that preimage over
does not occur. It has been shown in Sec. VI that this
sumption leads to the approximation~6.17! for P(n,r ;k)
with k.r . This approximation is exact whenk51, . . . ,r
21 and fork50 Eq. ~6.14! gives

P~n,r ;1!5P~n,r ;0!~2n!21, ~7.1!

whereP(n,r ;0)5(2n)2r . Thus, replacingk by n in order to
match the notation of Te´l @4#, it follows that

P~n,r ;n!H 5P~n,r ;1!exp@2k~n21!#, n51, . . . ,r

'P~n,r ;1!exp@2k~n21!#, n5r 11, . . .
~7.2!

and

(
n50

`

P~n,r ;n!'~2n!2r1
~2n!2r

~2n! (
n51

`

exp@2k~n21!#

'D01D1@12exp~2k!#21, ~7.3!

where D05(2n)2r5P(n,r ;0) and D15(2n)2r /(2n)
5P(n,r ;1). This result is equivalent to Eq.~4! in @4#. Note
that it is a feature of the symbolic approach to OGY cont
thatD0 andD1 depend onn. However, asn→1 both param-
eters simply increase monotonically to their~n51! values of
22r and 22(r 11), respectively. Also notice that the abov
definition of D0 differs from that used in@4# by a factor of
2n. In the present work, the termD0 arises from the even
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that the initial point is chosen in the target interval itse
when the control would be applied immediately. The form
lation of the problem used in@4# counts those points that ar
controlled in one or more iterations.

The result corresponding to Eq.~5! of @4# follows from

(
n51

`

nP~n,r ;n!'D1(
n51

`

nexp@2k~n21!#

'D1@12exp~2k!#22, ~7.4!

and the average number of iterations to achieve control,t is
given by

t5

(
n51

`

nP~n,r ;n!

(
n50

`

P~n,r ;n!

'
D1@12exp~2k!#22

D01D1@12exp~2k!#21 .

~7.5!

Following @4#, considerk!1. It is straightforward to argue
that @12exp(2k)#21@1 so that

t'@12exp~2k!#215@k1O~k2!#21'k21. ~7.6!

However, it is important to realize that the denominator
Eq. ~7.5! does not diverge ask tends to zero: in fact, it mus
itself tend to zero in this limit.

In order to neglect corrections arising from preima
overlap, it was necessary to assume thatn215e@22(r 11)

@cf. Eq. ~6.21!# and the validity of Eq.~7.5! depends on this
condition being maintained. Since 22(r 11).D1 and k
5 ln(11e)'e, it follows that D1!k is obligatory when the
approximation in Eq.~7.5! is used. Thus, there is no questio
of the denominator in Eq.~7.5! diverging; rather, it tends to
zero ask approaches zero. The conditionD1!k must be
ensured by reducing the length of the target interval~or,
s

,
-
equivalently, increasingr! to avoid preimage overlap. Fo
small k, D0!D1k21 and, ask→0, the denominator in Eq
~7.5! tends to zero. This behavior is consistent with E
~4.3! and~6.8!, which show that the probability of successf
control tends to zero asr tends to infinity.

VIII. CONCLUSION

The usual formulation of the symbolic dynamics of a te
map given by Eq.~2.1! provides a symbolic labeling of the
preimages of a class of intervals that converge onto its n
trivial fixed point. Provided that the target interval is chos
in this class, the problem of OGY control to the fixed poi
can be reduced to an equivalent combinatorial problem
volving the numbers of binary strings of finite length th
have the target symbol block only at their right-hand en
This string counting problem has been solved by establis
techniques to obtain the recurrence relation and the gen
ing function for the numbers of preimages of the target
terval contributing to OGY control. The difficulties of pre
image overlap noted by Te´l @4# are dealt with exactly in this
formulation of the problem. The recurrence relation allo
the probabilitypn(n,r ) of achieving control in less than o
equal ton iterations to be calculated, while the generati
function leads to closed forms for both the probabil
p(n,r ) of successful control and the average numbert(n,r )
of iterations to control when it occurs.

The results obtained in this paper confirm the pioneer
work of Tél @4# and extend it by providing an exact solutio
to the problem of OGY control of transient chaotic behav
in the special case of the family of tent maps~1.2!. In the
present work~as in Tél @4#! attention has been focused o
achieving control by stabilization of the nontrivial fixe
point of the maps, but the symbolic approach presented h
is not limited to that case. The symbolic formulation of OG
control to a periodic orbit of nontrivial period for tent map
near crisis, and its solution, will be discussed in the follo
ing paper@14#.
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