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Control of transient chaos in tent maps near crisis. 1. Fixed point targeting
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Combinatorial techniques are applied to the symbolic dynamics representing transient chaotic behavior in
tent maps in order to solve the problem of Ott-Grebogi-Yorke control to the nontrivial fixed point occurring in
such maps. This approach allows “preimage overlap” to be treated exactly. Closed forms for both the prob-
ability of control being achieved and the average number of iterations to control are derived. The results are
discussed in relation to the work of Tand shed new light on the transition to the control of permanent chaos.

PACS numbes): 05.45-a

[. INTRODUCTION there is a nonzero probability that control will never be

achieved. Thus, for transiently chaotic control it is necessary

to consider two characteristics of the control procégsthe
Interest in the control of chaotic systems has grown rapprobability that control takes place, afig) the time to con-

idly in the last decade, fueled, in part, by the diverse naturerol when it occurs. The present paper studies these charac-

of its applications. For instance, Ditto and Munakgtare-  teristics of transient chaos in a family of piecewise linear

viewed an impressive array of examples from physeg., maps for which exact results can be derived.

A. Background

laser technology, telecommunicationshemistry(e.g., sta- Finally, it should be noted that the symbolic techniques
bilization of chaotic chemical reactionsand biology(e.g.,  used in this work have a physical interpretation within a
heart arrhythmias, neural netwoyks thermodynamic formalism. For example, tkéh order pre-

A notable theoretical catalyst, which has initiated a largemages described in Sec. | C are essentially what are referred
number of publications on chaos control, is the techniqud0 as k cylinders in the thermodynamic approach. When
developed by Ott, Grebogi, and York®GY) [2] for con-  ¥=1, these sets cover the interfd,1] and provide a base
trolling states of a chaotic system onto an unstable fixed ofor its standard topology. For>1, the corresponding sets
periodic point using only small controls. The OGY strategyProvide a natural neighborhood system of the repelling in-
is to allow the uncontrolled chaotic orbit to evolve until it variant set. These neighborhoods provide a symbolic ap-
reaches a suitable neighborhood of the tafgetge 1 and proach to the associated transient chaos. Also, many combi-
then to apply small controlling perturbations of a Systemnatorial generating functions can be formally interpreted as
parameter to stabilize the controlled orbit in the vicinity of €valuations of sufficiently general partition functions. For
the target(stage 2. example, the formul#3.9) has such an interpretation within

The OGY method h|gh||ghts an important difference be-@ grand canonical ensemble. While the connection with ther-
tween the control of chaos and more regular control systemgnodynamics has not been exploited explicitly in the current
In the chaotic case the Wamng time before a control is apWOl’k, the interes’ged reader should consult the excellent text
plied depends sensitively on the initial point of the orbit, i.e.,0f Beck and Schigl [6] for more details of the thermody-
this crucial parameter of the control process behaves like B&mic approach to chaos.
random variable. The distribution of this random variable
and its average value are clearly of central importance in B. The statistical experiment

prac_tica[ a_pplicgtions. If the waiting time for control to be 14 [4] addressed the problem of using the OGY strategy
applied is inordinately long, then the control procedure may 51 45 control the transient chaos associated with the difis

be of I'tt.le practical valge_ . . . of the chaotic attractor that occurs in the one-dimensional
The literature associated with chaotic control and its ap’Lamin of maps

plications has been exhaustively reviewed in the recent boo

by Chen and Don{g3]. It is clear from this source alone that, Xk+1=a—X§, (1.2

for the most part, attention has been focused on controlling

permanently chaotic systems. However, there is a sparser but

more recent literature on transiently chaotic systems. SucWvhena=2. The aim of the control was to stabilize the non-

systems may well offer important opportunities for control trivial fixed point (xg) of the map fora slightly greater than

where a permanently chaotic system cannot be realized @&, where chaotic transients occur. In the process of estimat-

maintained. At the heart of this research effort is the work ofing the average number of iterations before control was

Tel [4,5]. achieved, Teconsidered a statistical experiment in which a
The additional complication that transient chaos presentkrge number of initial points were chosen at randore.,

is the possibility that orbits can escape from the vicinity ofaccording to a uniform distributionin the support interval

the repellor(and therefore the targeind never return. It and obtained an expression for the frequency of initial points

follows that, in contrast to permanently chaotic systemswith orbits reaching the OGY target intervigl (containing
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Xg) in less than or equal ta iterations. The work reported [¥=2] [£=t [%=2]

here deals with the analysis of this experiment for the case £
where the right-hand side of Eql.1) is replaced by the
generalized tent map

2vX for —oo<xs§

T,(x)= (1.2 I {

- 2v(1—x) for t<x<w

(see[8]). The more familiar tenfor “triangle”) map [9],
which exhibits permanent chaos, correspondg+d.: tran-
sient chaos occurs far>1.

It is important to emphasize that the statistical experiment /
outlined above refers only to stage 1 of the OGY procedure,
in which the dynamics are those of the uncontrolled system. 0.2
In this paper, as ifd], stage 2 is only relevant in that it links
the length of the target interval to the maximum value that
the additive control is allowed to takeee Sec. ¥ Compli- 0 , , , . \
cations associated with stage 2 that may be encountered for 02 0.4 \/ 0. 08 1
nonlinear maps in gener#.g., failure to achieve or main-
tain control after entering the target interveb not occur for 02
the piecewise linear tent maps. For example, linear feedback -
control ensures the existence of a sequence of additive con- Ir
trol parameters such that the controlled orbit remains within

the target interval. Thus, control is assured when the stage .1 FIG. 1. lllustration of the orQek—prelmaqcaSs of a typical target
- - interval | ¢ under the magl.2) with v=1+2"° andk=1,2.
orbit first enters the target interval.

=G, x)

0.4 4

_ Providedk is not too large, the séi, is the disjoint union of
C. Target preimages 2X~1 components, each of which is an ordepreimage of

Since the initial points are chosen according to a uniformi ¢ - If we choose to denote these “first-entry” ordetpre-
distribution, the probability of selecting a starting poigt ~ images oflg by w;, i=1,...,27% then, fork=12, ...,
with orbit that is controlled in less than or equalratera- k-1
tions is given by the lengttLebesgue measuref the subset Up=Uj_1 Wi (1.3
of points in[0,1] that contribute to this event. Given that .

control takes place at the first entry of the orbibegfinto I - is the subset of points i®,1] with orbits that first entetr in

the required subset $0,1] consists of points with orbits that €Xactly k iterations of the mag1.2). What is more, since
every orbit enterind g must make its first entry intb: at a

make their first entry intdg in less than or equal to time ; X ; .
steps. Once entry into the control region is achieved, th&Nique value ok, the sets defined in Eq1.3) satisfy
control is applied and Eq1.2) no longer describes the dy-

namics. Considef, (1) ={xo| T%(xo) € I¢}. The mapT¥ UV j=2 (14
generates ‘2coverings of[0,1] and the domain of each cov- for j=1,... Kk, whereU, is I itself. Hence, the set of
ering contains a single, connected componenTpf(I¢),  initial points with orbits that first entety in less than or

which is conveniently referred to as an “ordepreimage of  equal ton iterations is

|.” Figure 1 shows the 2 disjoint, kth order preimages of

a small target intervalg, for k=1 and 2, whenv=1 U=Up_qUy, (1.5
+27°. It can be seen that, for eaghhalf of the preimage

components are subsets of those of ordter {). This struc-  where the union is disjoint because of Efj.4).

ture in the preimages dfz arises from the action of ,,

which converts each covering of ordée 1) into two cov- D. Preimage overlap

erings of ordelk, one of which intersects the original order-
(k—1) covering. The result is that each ord&r(1) preim-
age ofl ¢ leads to two ordek preimages, one of which lies
inside the original orderk—1) preimage. A pointX, UNIg=3. (1.6)
eT, *0)NT, * (1) has an orbit that entells: after at

most k— 1) iterations and remains there on #té iteration. = The domain of the covering di0,1] generated byT‘; that
Orderk preimages of ¢ that contain such points are of no contains the fixed pointg has nonempty intersection with
interest at orderk in the control problem, because they for all k and, for lowk, | ¢ is typically a proper subset of this
should have been counted at lower orders. The relevanfomain. Moreover, the’2 ! orderk, first-entry preimages of
points in the ordek preimages ol ¢ are those lying in the | are disjoint fromIg itself (cf. Fig. 1). However, ask
setU, =T, *(Ip\T, *"D(1), for eachk=1: these are the increases, the slope of the coverifiegqual to (2)X] in-
points with orbits that first entelr- in exactly k iterations.  creases and the length of the domain decreases so that, even-

Unfortunately, for givenl ¢, Eq. (1.3 is valid only pro-
vided k is sufficiently small for
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tually, I has nonempty intersection with the domains of 1=0in(21) 1=0,1in(2.1) 1=0,1,2in(2.1)
adjacent coverings. Inevitably, therefore, there is a value of, n 10 i\n 1o 12 )

k=K for which _the intersection in Eq1.6) first becomes  _ o T 1 L0001 L1 10 2090011010 11 11 1ot 10
nonempty. A poinix e UKﬂIF_has the property thateI_F, [ _1_ F T 7- J‘r [ SRR @v=1
T8(x) elp butTi(x) €l¢, forj=1,... K—1. The orbit of I AN R FAY \i

x starts inlg, leaves the target interval fa¢—1 iterations, [ 7% [ ‘H ‘H T - H i e HH‘ HI—J Byvo1

and returns to it at th&th iteration. All the points of the t% w+ Nm

nonempty “overlap” UxNIg must be excluded from the 7.([0.17) Tv'3<[0,11>L

union in Eq.(1.3). Thus, when such an overlap occurs, Eg. ML) ' =71 JJ

(1.3) is no longer valid, because points in the intersection of — TR

the preimage with have been counted alreadykat 0. For

k>K, the preimages of lower order overlaps must be ex- FIG. 2. lllustration of(a) the uniform dissection of0,1] ob-

cluded along with any new overlaps that occur at okdand  tained from non-negative powers @f, together with the symbol

consequently the size of the overlap growskamcreases blocks labeling its subintervals; anth) the interpretation of the

aboveK. Moreover, ifn>K, overlap has a cumulative effect symbol blocks of lengttk as labels for the orddt-preimages of

on the estimate of the set of points that are controlled in lesk?;1] underT,, for k=1,2,3. Note the analogous roles played by

than or equal to iterations given in Eq(1.5). the p0|ntx:1_/2 anq its preimages wher=1, and the escape in-

It is apparent from the above discussion that the criticafva!le and its preimages wher>1.

valueK is increased if the length df- is reduced. Te[4]

avoided the problem of overlap by assuming target intervahmbiguous: oy, 10445 ...=10..., for all k, because

lengths small enough to maintain the validity of Ef.3) for - T Yy)=1 andT¥*i(y)=0, forj=2,3, ... .This indeter-

the values ofn considered. In the present work, symbolic minacy[which is a reflection of the ambiguity of the repre-

dynamics is used to count the number of first-entry preimsentation of integer multiples of the inverse powers of 2 in

ages of the target interval for aty This leads toa ge_nerall— base 2, e.g., 1/2 can be represented (490... or

zation of Eq.(1.3 and a form for Eq(1.5) that is valid for (.011...) [9]] is not a serious problem for the symbolic

anyn. description of the dynamics, but, in relation to the present

work, it can be viewed as a remnant of the transient chaotic

Il. SYMBOLIC DYNAMICS FOR TENT MAPS behavior observed whem>1 (see Sec. Il B For example,

the symbolic representation of the pointdescribed above

shows that its orbit can move throud@,1] in an irregular

Forv=1, the functionT,, defined in Eq(1.2, maps(0,1]  way for k—1 iterations before reaching(y)= % followed

onto itself, and its non-negative integer powers can be usegy Tk*1(y)=1 and, ultimately, arriving at the fixed point at
to associate a binary sequence with each poirfOdf] (cf.  yZ

[8,9]). Theith element of the sequence;, is given by

I
—
Sl

ps
=
I—>

A. Permanent chaos

0 if 0T (x)<% B. Transient chaos
77 if 1<T (x)<1. @1 Forv>1,T, no longer map$0,1] onto itself, points in the
. (open “escape interval” lg=(G[1—(v—1)/v], 3[1+(v
Equation(2.1) means that for each non-negative integd;,  —1)/v]) leave[0,1] underT,. An alternative interpretation

(with T9=identity) partitions [0,1] into 2'** subintervals (equally valid forv=1) of the coding of the points ifi0,1]
of equal length, each labeled by a unique symbol bloclgiven by Eq.(2.1) can be obtained by recognizing that, for
containing {+1) binary digits. Figure @) illustrates this each positive integer j, the 2 symbol blocks
uniform dissection of[0,1] for i=0, 1, and 2. Note that (.0¢010;...0j_4) uniquely label théclosed preimages of
the symbol sequence is built up by appending new binary0,1] underT’, [see Fig. 20)]. This view of the coding em-
digits, obtained from Eq.2.1) for increasingi, to the phasizes the correspondence between the symbol blocks and
right-hand end of each symbol block. Thus, the subintervalshe 2 coverings of[0,1] generated byT! . It also makes
labeled by the symbol blocks ¢go10;...0;-10) and clear that the ambiguity of the symbolic representation of the
(.0go105 ...0j_11) are both subsets of the subinterval la- preimages ok=1/2, for v=1, arises because the length of
beled by (oo010,...07-1) and their union covers it. In the escape interval goes to zero in that case.
the limit of i tending to infinity, the subinterval length ap-  As Fig. 2b) illustrates, the procedur€.1) attributes a
proaches zero and each resulting infinite binary sequenagnique symbol block (@0 . . . o«_»0_1) of k binary dig-
represents a distinct point ii9,1]. Moreover, ifx is repre- its (ak block) to each of the ordek-preimages of0,1] that
sented by (o010, ...) then the above construction en- make up the ® components of the set of points with orbits
sures thafT;(x) corresponds to @10, ...),1.e., Ti(X) is  that remain irff0,1] for at leask iterations. The remainder of
represented by a left shift on the symbol sequencexfor [0,1] is filled out by the preimages ofg of order j

It should be noted that pointsin [0,1] for which TII(Y) =0,1,2 ... k—1. The union of these preimages is the set of
=3, for some non-negative integds are not assigned a points with orbits that enter the escape interval in less than or
unique binary sequence by E.1). For such points, the equal tok—1 iterations(i.e., that leavg0,1] in less than or
binary digitsoy . . . 0, are determined by Eq2.1) buto,  equal tok iterations. It follows that, for each positive integer
can be either 0 or 1. What is more, it is ondy, that is  k, [0,1] is partitioned intd ¢ and the preimages o of order
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less than or equal tok( 1), together with the 2 compo-  obtain the number of preimages lgf containing points with
nents of the set of points with orbits that remain@1] for  orbits that first entefg in less than or equal to iterations.
at leastk iterations(i.e., the ordeik preimages of0,1]). The preimages ofg of orderk are represented by symbol

It is evident that, in the limit ok tending to infinity, Eq.  blocks derived from(.11...1),, by appendingk binary
(2.1) provides symbol sequences only for points with orbitsdigits to its left-hand end. The resultingk{r) block,
that remain irf0,1] indefinitely. Forv>1, such points are the (.0102...011...1),, clearly yields (.1...1) after
elements of the Cantor set formed by the deletion of all ofk successive applications of a left shift. Af 8uch preimage
the preimages ofg. For »=1, I has zero length, every blocks represent subintervals [@f,1] containing points with
point of [0,1] remains in[0,1] indefinitely. Every point is  Orbits that entefr afterk iterations, but only those for which
represented by an infinite binary sequence but the preimagddis iS the first entry intd.. are to be counted. Such preimage
of x=1/2, where the closed preimages[6f1] overlap, are symbol .blocks are distinguished by the property that the bi-
not represented uniquely. nary stringo 0 . . Lo dl . = 1 oflength k.+r contains the

It should be noted that, for>1, all the features of “cha- substring consisting of adjacent 1's, at its right-hand end

otic behavior” predicted by the conjugacy &, and the left ~Put nowhere else within it , =0}, ,= ... =0, =1 then
shift on infinite binary sequencdincluding a dense set of the orbit of points in this preimage would enter after j
periodic orbits, aperiodic orbits, efccur on the invariant <K iterations, so that the entry occurring afteiterations
Cantor set described above. It is this repelling invariant seY/ould not be the first.

(which has Lebesgue measure 2efinat is responsible for

the transient chaotic behavior studied here. Each transiently C. Combinatorics for characteristic strings

chaotic orbit ultimately escapes frdi®, 1], i.e., there exists a The problem of counting binary strings with a given sub-
non-negative integek such that the initial poink, of the  string occurring only at one end has been dealt with by Od-
orbit lies in an ordek preimage of ¢ but does not lie in any  |yzko [10]. The calculation, for the case of interest here, may
orderj preimage of that interval with<<k. It follows that  pe outlined as follows. Le& denote the binary string af
the orbit ofx, remains in0,1] for kiterations, enteringle on  adjacent 1’s and defin@) f,(m) to be the number of binary
the kth step, and Eq(2.1) provides a binary symbol block strings of lengthim that do not contairf (as a substring of
(.0001 . . . 0k-20%-1) based on the evolution of this part of adjacent binary digitsanywhere within them; antb) ga(m)

the orbit. This block determines the ordepreimage of0,1]  to be the number of binary strings of length with the
containingx, and, under left shift, the ordek(-j) preimage  property thatA occurs at the right-hand end but nowhere else
of [0,1] containingT!(xo) for j=1,... k—1. Itis impor-  within them. Note thag,(m)=0, form=0,1,...r—1, be-
tant to distinguish the finite symbol blocks that are used incause there can be no binary strings of length less tthiaat
this symbolic treatment of transient chaotic behavior fromhaveA at their right-hand end.

the infinite symbol sequences that describe the permanent |f B=(b;b,...b,) does not contairA as a connected

chaos that takes place on the invariant Cantor set. substring therBb= (b;b, .. .bb), with b=0,1, must ei-
ther fail to containA anywhere or contaié only at its right-
I1l. A SYMBOLIC APPROACH TO OTT-GREBOGI-YORKE hand end. Thus
CONTROL
2fp(m)=fa(m+1)+ga(m+1). (3.1

A. Target intervals

It is easily verified that the symbol sequence correspondgyrthermore, each concatenatiBA containsA in one, and
ing to the nontrivial fixed point ofT, is (.111...). The  only one, of the forms

relationship between symbol blocks of increasing lerigde

Sec. l) means that this point lies inside every member of the ,—/’H,—m/jh

sequence of subintervals 0f[0,1] represented by BA=(bb,...bj11...111...1)
{(.2),(.12),(.11D), .. .}. In order to make use of symbolic dy- e

namics in the control of transient chaos it is necessary to take

the target interval to be one of these subintervals. This =(b1b,...bjAlL. .. 1), (3.2
means that some flexibility in the choice lof must be sac-

rificed and the luxury of having the fixed point centrally with j=m,m—1m-2,... m—r+1. The leftmost sub-

placed inl ¢ has to be given up. However, the target intervalsstring of lengthj +r in Eq. (3.2 hasA at its right-hand end
defined by symbolic dynamics have significant advantagebut nowhere else within it: the number of such strings is
over other choices in tha#) partial overlap of the preimages g,(j+r). Since the total number of concatenatid®a is
of I with | itself does not occur, ang) established com-  f,(m), it follows that
binatorial methods$associated with finite binary stringsan
be used to count the number of first-entry preimages present m r
at any order. fam= > ga(j+r)=> ga(m+i). (3.3
j=m-r+1 i=1
B. Characterization of first-entry preimages
Suppose thalt: is taken to be the interval labeled by the Equations(3.1) and(3.3) can be used to obtain both a recur-

block(.11...1),, where the subscript indicates the numberrence relation and a generating function for the numbers
of digits in the block. Recall from Sec. | that the aim is to ga(m). The recurrence relation,
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r-1 ages ofl g satisfying the first entry condition in any order.
galm+r+1)= 2 ga(m+r—j), (3.9 What is more, the preimages bf up to ordenm arising from

1=0 (.011...1),, can only contain a binery string ofadjacent
1’s at their right-hand end, and therefore afi 2 of these
preimages contribute fde=1, . .. r. One preimage of order
r+1, namely, that represented by {.1..1011...1), .4,
fails to satisfy the first-entry condition, so thaK") =2

follows when Eq.(3.3) is used to eliminatef,(m) and
fa(m+1) from Eg.(3.1). The generating function can be
obtained as follows. Multiplication of Eq$3.1) and(3.3) by
z™ and summation fromm equals zero to infinity yields,

respectively, —1. A
B » The generating functiors,(z) for the numberg{N{"}5
2FA(2)=2 (FA(2) —1)+2 "Ga(2), (3.9  can be obtained from E@3.9) by, once again, remembering
thatga(m)=0, form=0,1,...y—1. Thus
and
Fa(2)=2 "Ca(2)Ga(2), 3.6 - - .
W2 CABONE oo Ga(2)= X gamz"=2' 3 NPZ*=2G\(2),
where m 0 (3.11
r—1
Ca(2)=2, 7. (3.7  where
=0
0 r -1
In Egs. (3.9—-(3.7), Fa(z) and G4(z) are the generating - _ k|4 i
functions forf,(m) andgs(m), respectively, andC,(z) is Gr(z)—go Ni'z'= 1 21 o (312

the correlation polynomial for the binary strily (see Od-

lyzko [10]). Equation(3.5 can be written in the form
IV. CALCULATION OF PROBABILITIES

(1-22)FA(2)+ Ca(2)=1 38 In the context of the statistical experiment described in
and substitution of Eq(3.6) gives Sec. |, the probability with which points, chosen according to
a uniform distribution in0,1], will be controlled in less than
- z' or equal ton iterations is given by the sum of the lengths of
Ga(2)= E_ gA(m)Zm:[Zr+(1_22)C @1 the first-entry preimages o of order less than or equal to
m=0 A .
n. The length of the target intervalz represented by
z' (\11...1) is (2v) " and the lengths of the preimage inter-
=7 1 - (3.9  vals of orderk are all equal and given by 3 "(2v) K.
(1_2 zi) Hence the probability of choosing an initial point with an
i=1 orbit that first enterslg in exactly k iterations is

N{"(2v) =+ and the probability of selecting an initial
D. Numbers of first-entry preimages ofl ¢ point that is controlled in less than or equalrtierations of

Since(.11... 1), represents the target intervgl, the the mapT, is

numberg,(m) of binary strings of lengtim that have the
substringA at their right-hand end, but nowhere else, is equal
to the numberN(k’) of preimages ofl ¢ of order k=m-—r
containing points with orbits that first entef after k itera-

tions of the tent map. Thull)=ga(k+r) and the recur- | the limit of n tending to infinity, the summation in Eq.
rence relatior(3.4) becomes (4.1) becomes the generating functié (z) evaluated at

r-1 (2v)"! and the probability that control is ultimately
N(krll:jzo NED . (3.10  achieved is given by

pn(v,r)=(2v)*fk§_)o N (2v) K (4.1

Recognizing thag,(m)=0 for m=1, ... r—1 is equiva- P(»r)=Ilm {Pa(v.}=(2) "G, (21) " H=Ga((21) .
lent to NJ=0, j=1,...r—1 and noting thatga(r) nﬂm

4.2
=N{’=1, Eq.(3.10 provides an efficient algorithm for gen- “2
erating the numberbl{" . Forr=2, Eq.(3.10 leads to the _ - .
Fibonacci numbers. Substitution ofG,(z) from Eq. (3.12 yields
Observe that Eq3.10 givesN{)=2%"1 for k=1, ..., -
r, andN{"),=2"—1, showing that the preimage “overlap” (2v—1) 4.3

referred to by Tk[4] first occurs fork=r+ 1. This result is P(v.1) (2v)"(2v—=2)+1°
immediately apparent from the symbolic approach. The first-

order preimages df- are represented by (.01..1),,and Since Eq(4.1) is a sum of positive terms, this limiting value
(\111...1),. The latter preimage clearly lies withir, represents an upper limit to the probability of successful con-
as do all its preimages, resulting in only half of the preim-trol for given v andr.
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A. Permanent chaos(»=1)

In this case, the whole of the intervgd,1] is a chaotic
invariant set fofT, . The set of points if0,1] corresponding
to symbol sequences that contain every finite symbol block
at least once has measurg &,11]. This means that, with
probability 1, the orbits of all choices of initial point [10,1]
will eventually pass through the target interVal Hence the

—m—v=]
—o—v=1.001
—a—v=1.01
—a—v=1.05

u,(v,r)

measure of initial points whose orbits first entgrin less Srmeev=l
than or equal ton iterations must tend to unity astends to VLot
infinity. This limiting behavior is confirmed by the expres- B

sion forp(»,r) in Eq. (4.3) which reduces to unity for=1.

B. Transient chaos(¥>1)

In contrast to Sec. IVA, whemn>1, the measure of the
initial points with orbits that ultimately remain if0,1] is
zero. Every poinkg in the complement of the invariant Can-
tor set must therefore belong to a preimagel pfof some FIG. 3. Plots ofu,(v,r) for »=1,1.001,1.01,1.05 when=5

orderk, with k=0. However, every preimage of orderof (solid ling); andr =10 (dashed ling The stronger dependence of
| is a subinterval of the corresponding preimagé¢Gt] of u,(1,r) compared withu,(1.05r) arises because the former is de-
orderk (see Sec. )l For k=1, the latter is labeled by a termined by the convergence pf(1r) to 1, while the latter is
binary symbol block (ogoy . .. o—1) and the evolution of  gominated by the convergence pf(1.05r) to p(1.05r). A dis-
the points within it is given by applying successive left shifts cussion ofu,(v,r) and its relation to the design of numerical ex-
to this block. Afterk—1 iterations,T',‘,_l(xo) lies in the sub-  periments can be found i12].

interval represented by &, 1) and enters the escape inter-

val at the next iteration. If the orbit of, entersl: thenr  Thus Eq.(3.10 provides a convenient way of obtaining the
adjacent 1's must occur as a connected substring withidata necessary to evaluate the finite summations in both Egs.
0901 .. .0K_1. Conversely, ifogo . .. o_4 does not con- (4.1) and(4.4).

tain this substring, then the orbit &f entersl ¢ afterk itera-

tions without entering . The orbit of such a point will C. Numerical results
never be controlled for it will subsequently leaM@ 1] and ) — )
not return. The number of binary strings of lendgthat do Calculations ofpy(»,r) andp,(»,r) reveal that their sum

not contain a substring of adjacent 1's anywhere within is _Iess_ than unity. This is to be expgcted, since_there are
them isf (k) and each of the corresponding symbol blocksPOints in[0,1] with orbits that do not satisfy the requirements

represents a subinterval [,1] containing a preimage o ~ @ssumed in deriving either E¢4.1) or Eq. (4.4). In other
of length (1 words, there are initial points with orbits that fail to reach

eitherlg or I in less than or equal to iterations. Thus, for
any finite n, there is a nonzero probability,(v,r) that the
fate of the initial point is undecided afteriterations. How-
ever, every point of0,1] must belong to one, and only one,
o n of three mutually exclusive possibilitiea) its orbit enters
pn(v,r)=(1—v*1)2 fa(k)(2v) 7K. (4.4 Ig; (b) its orbit reached g, without enteringl; or (c) its

k=0 orbit fails to reach eithelg or I¢; in less than or equal to
iterations. Therefore,

—v 1) (2v) k. Thus the probability of selecting an initial
point with an orbit that enterk: in less than or equal ta
iterations, without passing throudh, is

In the limit of n tending to infinity, Eq.(4.4) becomes
— _ v,r)+ v,r)+uy(v,r)=1. 4.8
p(1,) = lim (P11} =[(1- 220F (D) ], oy 1. Pl 2Pl ) 9
n—e As n tends to infinity,u,(»,r) must go to zerdcf. Fig. 3).
(4.9 This follows because almost dlin the sense of Lebesgue

— L _ — . measurg initial points in [0,1] have orbits that ultimately
The sequencépn(v,r)}n—o is increasing, so thad(v,r) is  |eave that interval and each such orbit either passes through
an upper bound fop,(v,r). The form of the generating |g or it does not. Therefore, the sum of the limiting forms
function F5(z) given in Egs.(3.6) and (3.7) can be used given in Eqs.(4.2) and (4.5 must be unity. Substitution of
[along with Egs(3.11) and(3.12] to show that Egs.(4.2 and (4.5 into Eqg.(3.8) shows that

©

r—-1
Fa(z)= >, (20 Nﬁf)i)zk. (4.6)

k=0

p(v,r)+p(v,r)=1, (4.9

for any choice of the positive integeror »=1. Notice also
. that Egs.(4.8) and (4.9 imply
It then follows from the recurrence relati@B.10 that

fA(k):Nﬁr_')_l (47) un(Var):[p(Var)_pn(er)]+[p(er)_pn(Vyr)](41@
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1.2 5 ability that control takes place is a property of the set of
initial points as a whole. Information about the failure to

achieve control is embodied in the latter. When designing a
numerical experiment both properties must be considered.
Clearly, it is advisable to arrange fpﬁ*(v,r) to be close to

——y=]

08 —o-v=1.00001 1, in order to avoid wasting computer resources on failed
° ¢~ v=1.0001 runs. For example, a possible strategy might be to ch@se
2 06 —omv=1.001 r so that the length of the target interval is compatible with
5%

—a—v=1.01

the maximum control parametgh) v so thatp(v,r) is suf-
ficiently close to unity; andc) n, so thatu, (v,r) is close

to zero. However, although such precautions ensure that the
experiment “hit rate” is sufficiently close to 1, they reveal
nothing of the number of time steps that have to be made
before the target interval is reached when control does take
place.

——v=1.05
0.4

0.2 4

r B. Calculation of the conditional average

For those initial points with orbits that are controlled, the
number of iterations required to reach the target interval is a
random variable. If the target intervh} is represented by
The first term in Eq(4.10 represents the maximum increase the code block (.1... 1), the probability of selecting an
in the probability of successful control that can be achievednitial point that first reachesr in exactly k iterations is
by increasingn. For givenv andr, no matter how largem  N{(2v) =¥ It then follows(cf. Tél [4]) that the average
becomes, there remains a probabilifv,r)=1—p(v,r) number of time steps to contro(v,r), is given by
that control will not be achieved.

FIG. 4. Numerical illustration of the dependencepgi’,r) on v
andr. Plots ofp as a function of are shown for trial values of.

Numerice}l va_lues op(v,r) for some trial values (_)f/ and (2V)—r2 ka(r)(ZV)—k
r are given in Fig. 4. Observe that, for all of the trial values k=1
of v>1, p(v,r) falls to a value close to zero far~20, but m(v,r)= % : 5.9
the closerv is to 1 the Iongerp(v,r) remains near to unity. (2,,)*2 N(kr)(z,,)—k
Recall that the length dfi is (2v) '<27", so that, for the k=0

values ofv>1 in Fig. 4, the probability of successful control . - . . .
has all but vanished for target intervals of length approXi_Observe that Eq5.1) involves only initial points with orbits

matelv equal to 10°. Hence. control broblems that impose that reachl¢. It is therefore an average with respect to the
y €q A P o P conditional probability distribution, which assumes that con-
the use of small target interval lengths, whilds bounded

. S . trol occurs.
away from 1, must be treated with caution if a realistic prob- . A ) )
ability of successful control is to be maintained. The generating functio,(z) obtained in Sec. Il can be
used to evaluate the sums appearing in &ql). It can be
V. AVERAGE NUMBER OF ITERATIONS TO CONTROL shown that
A. The assumption of controllability 2G| (2)
. . T(v,r)=|—= : (5.2
It can be argued that a practical estimate of the average Gi(2) |,_ (2)-1

number of iterations to be involved in a numerical experi-
ment should take account of the iterations that occur in failegvhere’ denotes differentiation with respect zpand substi-
runs, i.e., initial points with orbits that fail to reach the targettution of Eq.(3.12 yields the result
interval in the maximum number, of iterations allowed. In Al (r+1)Z +r2 1
this context, any orbit that fails to reach the target interval in (v,r)= 1
n, iterations must be counted as a failure. The probability of (1-2){1-2z+2"7}

choosing such an initial point is -dp, (v,r)=py (v.r)
+Un (v.r). As Fig. 4 showsp(v,r) [and hencepn*(v,r)]
can be significantly different from unity and, in such cases, 10 examine the behavior of v,r) near the crisis at=1,
failure to achieve control would make an additional contri-it iS convenient to write (2) *=2"%(1-¢), so that Eq.
bution ofn, [1—p, (,r)] to the expected number of itera- (5.3) becomes

(5.3

z=(2v)~1

C. Limiting behavior of 7(w,r) for small target intervals

tions involved in the experiment. Foet>1, this contribution 1-8

diverges as, —«. In order to avoid this difficulty, the cal- m(v,r)= m)

culation of the average number of iterations required for con-

trol to take place makes use of the conditional probability 1-(r+1)27"(1=8) +r2 - +(1—g)r+1
distribution that assumes control actually occurs. X[ 5+2 TP (1_g) 71

It follows that the average number of iterations to control
is a property of the set of controllable points, while the prob- (5.9
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FIG. 5. Plots ofr(v,r) calculated using Eq5.3) for »=1.01, FIG. 6. Plots of Ifin(x,r)] as a function of Ing, ) obtained from
1.001, and 1.0001. The limiting values obtained agree with thosgq (5.3) for »=1.01, 1.001, 1.0001, and 1.0. Note that the graph for

given by Eq.(5.9. Note that the base-10 logarithm afv,r) is  ,—1 nhas slope-1 for small enouglp, as predicted by Eq5.10.
plotted, rather tharr(v,r) itself, in order to present the data on a

single graph. 1-(r+1)2 "r2-C*+1 2

2 7D Tie)

m(1lr)= (5.9

For given 0<5<1, the terms containing factors of 2 are

ligibl d witl$ f fficiently | , and - .
neglgible compared witle for sutiiciently farger, an for sufficiently large values of. Herel(l1g)=(2v) " is the

1 length of the target interval, so that E(.9 shows that

5= T=(v)- (5.5  #(1r) diverges ag tends to infinity because the length of
the target interval tends to zero. In the OGY method the

Thus 7(»,r) becomes essentially independent afhenr is Ieng.th of the target interval is usually determined by the

large enouglfsee Fig. 5, i.e., it is essentially independent of Maximum allowed value of the control paramefgr. A

the length of the target interval when the latter is sufficientlyStraightforward calculation for the control in stage 2 yields

small (cf. Td [4]). For & tending to zero, i.e., very close to P« =vI(Ig) for the mapT,, so that Eq(5.9) gives

crisis, Eq.(5.5 gives

1-6

T(V,r)% 175

2
1 T(l,r)~p—, (5.10
Toc(v)%g. (5.6 *
whenr is large enough(cf. Td [4]). Clearly, a similar ex-
By definition 5=(1—»"1), so that —Inv=In(1-8~—5  Pression to Eq(5.9) holds whens>0 but is small compared
and to (2v) " ". In such situations, a transition between the lim-
iting forms given in Eqs(5.8) and(5.10 takes place asis
increased withs held fixed. This transition is illustrated in
(V)= (57 Fig. 6. Following T (cf. Fig. 4 of[4]), plots of If «(»,r)] as
a function of Inp, )=In[»(2v) "] are shown, so that the lim-
The escape rate is defined(cf. Td [13]) in terms of the iting slope of—1 predicted by Eq(5.10 is visible for v=1.
asymptotic formw,~ exp(— «n) of the probabilityW,, that a

randomly chosen point has not escaped fri@l] aftern  v|. ROLE OF PREIMAGE ORDERS WITHOUT OVERLAP
iterations. Direct summation of the lengths of the preimages

of the escape interval shows that = »~"=exp(—n n ») for It was shown in Sec. Il that overlajas defined in Sec) |
the orbits ofT, , so thatk=In ». Thus Eq.(5.7) can be writ- affects the number of preimages of the target interval only at
ten as ' orders greater tham. Since N§'=1, N{"=2%"1 for k
=1,...r, Eq. (4.1 can be written in the alternative form
1
Tx(V)N_y (58) 1 r-1 . n
K Pr(v,r)=(2v)"" 1+2—VE v+ D N2y,
j=0 k=r+1

in agreement with Tle[4]. It is important to note that the (6.1)

forms given in Eqs(5.5—(5.8) are not valid whens=0 (or,
equivalently, if v=1 or k=In v=0); rather, Eq.(5.4) then  whenn>r. Forn less than or equal to, only the first sum-
gives mation in Eq.(6.1) appears. These terms, where the number
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of first-entry preimages is unaffected by overlap, were usedhat (1+¢€) "'<1 then 2 " D<e and the first term ofy is
by Td [4] as the basis of his treatment afThe aim of this  dominant. Thus, since is close to zerom~(1+¢€) " im-
section is to discuss the significance of these “nonoverlap”plies

terms for the tent mapél.2).

_ —InCyp)  —In(a)
A. Approximation of the distribution p(w,r) In(1+¢) e

(6.7)

When the target interval is represented by the code bloc
(.11...1), there are no effects of preimage overlap ffor
<r. The approach taken by T4] is to assume than is
sufficiently small for no overlap to occur for the target inter-
val chosen. In the following discussion it will be assumed
that, for the given symbolic target intervai,is the largest
value for which this is true, namelp=r, and define

Lo p(v,r)~p(v,r)~(2v)""
1+ o ;o V') . (6.2

$he values of given by Eq.(6.7) indicate thafp(»,r) can-

not provide a realistic approximation fi{v,r) in any prac-
tical situation. For example, given the modest requirement
that p=e 3~0.05, Eq.(6.7) givesr=300 for e=0.01 and
r=3000 fore=0.001. In the former case, this means that

~10°% (6.8

1+1
2¢

p(v,r)=(2v)""

while in the latter case the asymptotic form given in B8
. - is of order 10°%°, In terms of the statistical experiment of
It is always the case that(v,r)<p(»,r), but for what val-  gec. |, there is essentially no probability of control in such

ues ofr (i.e., for what target interval lengtheoes the former  cases because the target interval length is so small for such
provide a reasonable approximation to the latter? The sum Qfg|yes ofr.

the geometric progression in E@.2) can be written as In conclusion, therefore, whil@(v,r) and p(»,r) both

have the same asymptotic forinamely, that given in Eqg.

-r
(20)" 2v-D+1-v Cou>1 (6.8)] asr tends to infinity, the value of required to satisfy
2(v—1) comparatively modest constraints on the relative efyam-
p(v.r)= 24r 6.3 creases rapidly as decreases toward unity. Indeed, the ap-
247’ v=1, proximation afforded by the contribution arising from preim-
ages without overlap in Eq6.1) is of no practical value for
while a minor rearrangement of Et.3) gives e=v—1=<0.01, because the probability of successful control
' is essentially zero for target intervals small enough to avoid
2(v—1)+1 preimage overlap.
(2v)~" —, When € is somewhat greater, acceptable values of the
p(v,r)= 2(v=1)+(2v) (6.4 relative errory can be obtained for more realistic target in-
1, v=1. terval lengths[e.g., for e=0.2, #=0.05, Eq.(6.7) givesr

~15 and Eq(6.8) yields p(v,r)~10°]. This is a reflection
In order to compare Eq$6.3) and(6.4) whenv>1, consider of the reduced significance of overlap wheis substantially
greater than 1. The length of each orétgureimage ofl ¢ is
(2v) =+ and this is smaller the greater the valuevoThe
corrections arising from overlap, which first appear for
=r+1, are therefore of smaller magnitude wheris sub-
stantially greater than one. When-1, the total length of the

. . . . . . - : o (r+1
It is convenient to writew—1=¢, wheree is typically posi- ~ Pre-images of ordek (in the absence of overlajs 2 ),

tive, less than 1 and tends to zero as the crisis is approach&fependent ok, and, whem tends to infinity with a target
from above. It then follows that interval of finite length, overlap is the mechanism whereby

divergence of the sum appearing in B¢.1) is avoided.
Thus overlap plays an essential role in the treatment of the

2v—1)+1—v7"
2-1)+1

2(v—1)+(2v) "
2(v—1)

p(vr) _
p(v.1)

P +e) " T14+e) " +e) "
p(v.r) =1— (1+e) + 27(1+e) _(1 ©) control problem when=1.
p(v,r) (1+2¢) 2¢ (1+2¢)
=1—1g(r,e€), (6.6 B. Overlap corrections to the probability density function

g The increase in the significance of overlap asap-
where 7 is the relative error imp(v,r). The presence of a proaches 1 is apparent in the probability density function
factor ofe ! in the second term of shows that care must be P(w,r:k) for p(v,r), where the terms with and without over-
taken if the crisis is to be approached closely. It is possible tdap occur in different ranges &
suppress this term by increasingbecause of the factor of The probability density function corresponding to the dis-
27" that occurs in its numerator. However, the first termyof  tribution p(v,r) is given by
remains a problem unless eitheris significantly different
from zero orr is large enough to reduce ¢le) " to an P(v,1;k)=N{(2v) (0, (6.9
acceptable value. An estimate of the valuer akquired to
achieve a given relative error whenis very close to zero whereN{" is the number of first-entry, ordérpreimages of
can be obtained as follows. It can be shown thati# such the target interval. RecaN{’=1 andN{" is equal to ~*
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FIG. 7. Results of numerical calculations Bf1+ €,r;k) forr
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FIG. 8. Numerical calculations dP(v,r;Kk) with »=1.01 and
r =10, illustrating thek dependence d? for k in the range 1 to 250.

data that are unaffected by overlap are extrapolated as a dashed line

in order to highlight the accelerated downward trendPifv,r;K)
for k>r.

for k=1,...r, but fork=r+1, N{" falls below 1, be-

preimage length of (2) ~*" with k=r+]. These overlap
corrections are also diminished at increasetNot only do
they first appear at larger values lgfbut their value is also
reduced by the dependence of the preimage length while

cause of the overlap of some of these higher order first-entrthe preimage number deficits are still given by Ey12. As
pre-images with the target interval itself. In the absence o& consequence, the acceleration of the downward trend in
such corrections, Eq6.9) would take the form P(v,r;k) may not be as marked as that shown in Fig. 7 when
€ is significantly greater than zero and/or larger values of
(2v)~", k=0 are used.

[(2v) "v X2, k=1. 6.10

|~3(v,r;k)=i

_ C. Asymptotic form for P(w,r;k) at large k
Note that Eq(6.10 includes the extrapolation &f to values
of k greater tharr. While P no longer provides an approxi-
mation toP for such values ok, the extrapolation is useful
because the deviation & from it represents the effect of
preimage overlap. Thus,

1. Transient chaos

When v>1, the decline ofP(v,r;k) with increasingk is
asymptotically exponential at largewith an exponent re-
lated to the escape raie Figure 8 illustrates the exponential
“tail” of P(1+e,r;k) when €=0.01, r=10. The
asymptotic form can be derived formally as follows. Equa-
tion (6.9 gives

k=0,1,...r
k=r+1....

=P(v,r;k),

- 6.1
<P(v,r;k), (619

P(v,r;k)[
IN[P(v,r;k)]=IN(N{")—kIn2—kIn v—r In(2v)

For v>1, Eq. (6.10 shows thatP(v,r;k) decreases ak (6.13

increases. The rate of decrease is determinee=y—1; the

greater the value of, the more rapid the decline &(v,r;k)

with k. Equation(6.11) shows thatP(v,r;k) follows the
same downward trend dsincreases from 1 to, but there-
after the decline is accelerated by the reduction in the num-
ber of preimages contributing because of overlap. Figure 7

and, therefore, the forward difference

AIn[P(v,r;k)]=In[P(v,r;k+21)])—In[P(v,r;Kk)]

(r)
k+1

~ =—Ilnv+ . .
shows P(1+€,10k) and B(1+e,10K), with =0, 5 nvin oNm €19
X104 and 103, fork=1, ...,20. The acceleration of the
downward trend in the data f&(»,r;k), arising from over-  For k=1,...r—1, the second term i6.14 is zero be-

lap, is clearly visible. However, this phenomenon is not al-causeN(") ;= 2% and N{"=2%"1. However, fork=r, this
ways so obvious. The recurrence relati@l0 can be used term is affected by preimage overlap. An extension of the
to show that the overlap correction analysis of the recurrence relati¢.10 used to obtain Eq.
(6.12 shows that

20N =207y (j-1)2) 72, (6.12
: : , N,
forj=1,... r+1. Observe that this correction does not de- ﬁ: 1—-2-(+D 4 o220 +1)y, (6.15
pend explicitly onr. Thus, the greater the value ef the r+j
smaller are the first +1 corrections due to overlgsince
each is the difference given in E.12 multiplied by the for j=0,1, ..., sothat
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AIN[P(v,r;r+j)]=—Inv+Iin[1—2"C*+D) 3. Transitional behavior

+O(2720+1)] The role played by the relative sizes ef=v—1=«

' +0(€?), and 2 "=1'I1(Ig)=v""1p,, in passing between
Egs. (6.18 and (6.20, can be obtained approximately by
Whenr is large enough for the second term in the right-hanokewriting Eq.(6.16 as

side of Eq.(6.16) to be neglected, it follows that

(6.16

AIN[P(v,r;r+j)]=—In(1+e)+In[1—2"(+1
+O(272(r+1))]
%_6_27(r+1)+ 0(62)+O(272(r+1)),

P(v,rir+j+1)=~P(v,r;r+j)exp—«), (6.19

where k=In v. Moreover, since Eq(6.17) is true for any

non-negative integgy, it follows that 1 )
~ Kk~ 5Px TO(P,€)+O(e)

P(r.rir+n)~P(rrirex(—«n). (6.1 +0(272H ), 6.2

for small € and larger. Provided all but first-order terms in
Eq. (6.21) can be neglected, it follows that

2. Permanent chaos

Equation (6.17 is based on the assumption thatis
bounded away from 1, i.ey=1+e€ with >0, so that the P(v,r;r+n)~P(v,r;r)exp — xkn)exp —p,n).
large+ limit in Eq. (6.16 provides a nontrivial result. This (6.22
assumption is made by T¢4], and Eq.(6.18 gives the
resulting asymptotic form that is dependent on the escapk this approximation, the “escape” 1>1r—=) and
rate. However, it is clear that the crisis itself cannot be“overlap” (v—1r=<r,) mechanisms make independent
reached using the analysis of Sec. VIC 1. An alternativecontributions to the overall exponential tail &f(v,r;k).

(and more practicalprocedure is to recognize that there is aThis approximate independence of the escape and overlap
lower limit to the length of target interval that can be con- mechanisms implies the existence of the transitional behav-
sidered(corresponding to a maximum acceptable value of ior in 7(v,r) that is shown in Fig. Gcf. Td [4]).

=r,), for otherwise the probability of success becomes un-
acceptably small, and to allowto approach 1 in Eq6.16)

[or, more precisely, in Eq6.14)] with r=r, . Under these
circumstances, the first term in E@.16) becomes negligible
compared with the second, so that

VII. CONNECTION WITH THE CALCULATIONS
OF Tél

Tél's calculationg 4] are based on the assumption that the
length of the target interval is so small that preimage overlap
does not occur. It has been shown in Sec. VI that this as-

f ok sumption leads to the approximatigb.17) for P(v,r;k)
P(v,ryiry +j+1)~P(v,r, ;r*+j)W with k>r. This approximation is exact whek=1,...r
Myt —1 and fork=0 Eq.(6.14 gives

~P(v,r, i, +j)[1—-2" "+

(%)

P(v,r;1)=P(v,r;0)(2v)" 1, (7.0

+0(27 20 )], (6.19 whereP(v,r;0)=(2v) ". Thus, replacing by nin order to
match the notation of Tg4], it follows that
and Eq.(6.18) is replaced by CP(nrlexd - k(n—1)], n—1 .

n N P(v.rin) ~P(v,r;1)exd —x(n—1)], n=r+1,...

reti+l (7.2)
P(r,ryire +m~P(rr,ir)]] — (@
=1 2N and
~P(v,r ;i )[1-27 ("D - (21) " &
. ~ -r _ _
LO@ AT (), (620 & PIMT@N g 2 el mk(n=1)]

~Ap+A[1—exp—«k)] 71, (7.3

whenv=1 so that Inv=0, ~ is replaced by= in both Egs.

(6.20a,b. It is then clear[from Eq. (6.203] that the where Ay,=(2v) "=P(»,r;0) and A;=(2v) "/(2v)
asymptotic behavior oP(v,r, ;r, +n) is determined by the =P(v,r;1). This result is equivalent to E¢4) in [4]. Note
numbers of preimages of the target interval that contribute tehat it is a feature of the symbolic approach to OGY control
the event that the orbit first enters that interval in exactly thatA, andA,; depend orv. However, as»—1 both param-

+j iterations, withj=1,... n+1. Moreover, Eq.(6.15

shows that the ratidl{") . ,/2N("); is independent qffto first

order in 27 ("*Y and thereforeP(v,r, ;r, +n) depends
only onn to this order{see Eq.(6.200].

eters simply increase monotonically to their=1) values of
27" and 27 ("*1 respectively. Also notice that the above
definition of A, differs from that used if4] by a factor of
2v. In the present work, the termy, arises from the event
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that the initial point is chosen in the target interval itself, equivalently, increasing) to avoid preimage overlap. For
when the control would be applied immediately. The formu-small x, Ag<A;x~ ! and, ask—0, the denominator in Eq.
lation of the problem used if#] counts those points that are (7.5 tends to zero. This behavior is consistent with Egs.

controlled in one or more iterations. (4.3) and(6.8), which show that the probability of successful
The result corresponding to E¢p) of [4] follows from control tends to zero astends to infinity.
* * VIIl. CONCLUSION
nzl nP(v,r,n)%Algl nexd —«(n=1)] The usual formulation of the symbolic dynamics of a tent

map given by Eq(2.1) provides a symbolic labeling of the
~A[1-exp(—x)] 7%, (7.4 preimages of a class of intervals that converge onto its non-
. ) . ) trivial fixed point. Provided that the target interval is chosen
and the average number of iterations to achieve contrisl, j, this class, the problem of OGY control to the fixed point

given by can be reduced to an equivalent combinatorial problem in-
o volving the numbers of binary strings of finite length that
> nP(v,r;n) have the target symbol block only at their right-hand end.
=1 A[1—exp(— k)] ? This string counting problem has been solved by established
== = Apg+A[1—exp—x)] T f[echniqugas to obtain the recurrence relation and the generat-
> P(v,r:n) ing function for the numbers of preimages of the target in-
n=0

terval contributing to OGY control. The difficulties of pre-
(7.9 image overlap noted by T¢4] are dealt with exactly in this
formulation of the problem. The recurrence relation allows
the probabilityp,(v,r) of achieving control in less than or
equal ton iterations to be calculated, while the generating
r~[1—exp— k)] '=[k+0(xk?)] 1=k 1 (7.6 function leads to closed forms for both the probability
p(v,r) of successful control and the average numiger,r)
However, it is important to realize that the denominator inof iterations to control when it occurs.
Eq. (7.5 does not diverge ag tends to zero: in fact, it must ~ The results obtained in this paper confirm the pioneering

Following [4], considerx<1. It is straightforward to argue
that[1—exp(—«)] *>1 so that

itself tend to zero in this limit. . . work of Td [4] and extend it by providing an exact solution
In ord.er to neglect corrections arising from preimageto the problem of OGY control of transient chaotic behavior
overlap, it was necessary to assume thatl=e>2""1  in the special case of the family of tent mafis?). In the

[cf. Eq.(6.2])] and the validity of Eq(7.5) depends on this present work(as in Té [4]) attention has been focused on
condition being maintained. Since ¥*Y>A; and x  achieving control by stabilization of the nontrivial fixed
=In(1+¢€)~e, it follows that A;<« is obligatory when the point of the maps, but the symbolic approach presented here
approximation in Eq(7.5) is used. Thus, there is no question is not limited to that case. The symbolic formulation of OGY
of the denominator in Eq(7.5) diverging; rather, it tends to control to a periodic orbit of nontrivial period for tent maps
zero ask approaches zero. The conditidyy<<« must be near crisis, and its solution, will be discussed in the follow-
ensured by reducing the length of the target interial  ing paper[14].
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